
hr AD—AO62 462 MASSACHUSETTS UNIV AMHERST F/S 12/2
HARDWARE EI *4ANCENENT OF OPERATING SYSTEMS. (U)
NOV 76 C C POSTER QAA S2Q—76—e—0335

UN CLASSIFIED ARO—1fl30.t—EI. NI

_ _

I- ~~~J!In
_ _ _ _ _

I
__ _

_!fl IO

_ _ _

__ n. a

SECURITY CLASS IFICAT IO N OF TNIS PAGE (IThsn 0.1. EnI.,.~~ / ~ ~ ~~~~~
j —EL~~~~~~~~~ rw &A~~k l r A ~r sfThJ D A r E READ INSTRUCTION S

~~~~~~ ,Jrs I IPU~..V M~~ FI I M I  I~.PI~ U ~~~~
7I- BEFORE COMPLETIN G FORM

REP ORT P4UMPEP 2. 3oVT ACCESSION NO. I RECIPI ENT ’S CA tAL OO NUMSER

None

—
. TITLE ( .d SobUtl.) 

. - 
__~~~ I TYPE OP REPORT 9 PERIOD COVERED

Hardware Enhancement of Operating System:.  ‘ Final Sept. 23, 1976
____ - Sept. 23, 1978

S PERFORMING ORO. REPORT MUMSER

7 AUTHOR(.) 
— 

I C O N T R A C T  OR G RANT NUMSER( .)

Foster DAA G 29—76—C— 1~

9. PERFORMING O R G A N I Z A T I O N  NAME AND ADDRESS t O PROGRAM ELEMENT . PROJECT . T A SK

~~~~~~ AM A~~ ~~ .L~ jJNIT NiJUSERS
I .:~J 7

~~~ University of Massachusetts “ ‘I  ~~~~.

~~~~~ .
. i I

II CONTROLLING OFFICE NAME AND ADDRE SS / / ~~~~~PQkL.aAX-~ ——
U. 2 . Army Research Of f i c e ~ N o v - .~~~~~ 1478
f (.;t) Ili ~ o Box 1.2 11 1V NUUWER or PAGES
61 :0 l I c k ! t r i a n g l e J ~ , N .

14. MONITORING AGt NCY NAME & AD ES 4IU. r~ j i fr0Uh1a4 Sc.) IS. SECURITY CLASS. (of hi. ~e9orf)

Same IJn~ .Lassi ~‘ie-i

~~~ 

/ 15.. D!C LASSIF ICAT ION/ DOWNG RAO ING

19 DIST~~~BUTION STATEMENT (al hi. k.pon, . - —

~ r1:~ ~~~~~~~~~~~~~~~~~ ~~ ~~~ ‘,.o’-. -
~~~~~~ 

—
~~~~~~~~ 

/

Ap p r - ’vo i for  p i2li c release;  d i s t r i bu t i on  unl imi ted .

4%
I? DISTRIBUTION STATEME NT (of the ab.ftact .nI.r.d in Bioclc 20, Sf dill.rwl from Ripen)

NA 
vJ~ t ~ 17 .~ . _ .j ~~~!~

( \: 0

IS S U P P L E M E N T A R Y  NoTEs
~~i~~~~~

/1 j~ ( 
‘

~~

~~~
_,

TIl e f i r ! i i r i ~-n in t h is report are so. to t~ iie’r as an of f ic ia l
‘ ; , I r O ,rr: e fI t . of the Army position , unless so designated by other authorized

i - lir l ‘ ; .
19 KEY WOROS (Coniln.~. en r.~.,.. .ld. if n.c....ry wd identify by block n,m,b.,)

Operating Systems , Hardware enhancement , Content Addressable memories.

20. SIRACT (ConUnu. on ,.vera. .id. lv n.c...ar/ id id.ntiIy by block numb•r)

his study investigated what hardwa~e could be added to a conventional
computer in order to speed up the execution , decrease the complexity
and improve the reliability of an operating system. It was found that
content addressable memories would be useful for four aspects of a
system: ready queue , clock wake up queue , I/O device control and
resource access control. A preliminary design for CAM hardware is
inc1uded .~ -

DD jAN 73 1473 ‘ fl ON OF I NOV 96 IS OSSOLETE
~~Jr~~~1tssi cL~d1~~ 1 ~ 4,) 4: 2

~
) V ~~~

~) j :)

SECURITY CL.A UIFICATION OF THIS PAGE (WP,in D.i. tnh.. .d) ~~

—
-~~

Hardware Enhancement of Operating Systems

Final Report

Caxton C. Foster

November 23, 1978

U. S. ARMY RESEARCH OFFICE

CONTRACT / GRANT NUMBER

DAAG 29—76—G— 0335

UNIVERSITY OF MASSACHUSETTS

Amherst , MA 01003

APPROVED FOR PUBLiC RELEASE;

DISTRIBUTTON UNLIMITED .

THE FINDINGS IN THIS REPORT ARE NOT TO BE
CONSTRUED AS AN OFFICIAL DEPARTMENT OF
THE ARMY POSITION , UNLESS SO T)ESIGNATED
BY OTHER AUTHORIZED DOCUMENTS .

LJ
I

-
~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _-

V

Tn t r~ d u c t i i)n

During the past two years we havc looked ; 1 several ways of improving

the per formance of an operating s y s te m . We have concent ra ted on improvements

tha t might be brought about by means (‘f additional hardware. Fur the r we have

concen t ra t ed on small dedicated systems that mus t respond rap idl.y to thei r

env i ronmen t . These are o f t e n cal led real t ine systems .

Academic types concen t ra te t h e i r academic type research on two aspects

of ope ra t i ng systems . These are loosely dest ribed as t r a f f i c control

(semaphores) and as queuing theory . In the real world ne i the r of these has

a great deal of bear ing on whether an opera t ing system runs rapidl y or slowl y .

To be sure one can eat up a great deal of t ime by larding a system with

comp lJcated interlocks . In the f ina l analysis a great fraction of these

semaphores can be eliminated by proper design of the system . One does need

to worry about passing messages from one sub program to another and one

does need to worry about possible race conditions but both of these can be

hand led e f f i c i e n t ly , t i de ly and w i t h considerable d ispatch b y a monitor.

Queueing theory tells one , after a great deal of mathmatical manipula—

t ion , that things are going to pile up where bottle necks exist. It can

tell you how bad It Is l ikely to get hut since one must allow for the worst

case in any event this is if onl y passing i n t e r e s t .

Our conclusions can be s ta ted succinc t l y . One : suppl y a good mechanism

for holding the queues of processes w a i t i n g fo r resources . Two: provide

enough resources so tha t very few proc esses are wai t ing on queues.

Let me come s t r a i g h t to the p o i n t . The best hardware enhancement for

an ope rat ing oyster ’ tha t you can buy is more main storage : The reason this

is t rue is very simpLe . I f there is s u f f i c i e n t main storage available you

do not need to compl ica te your system by providing v i r tua l storage . If every—

2

body is in mainstore all the time, then there is no “unoverlapped swapping

time” at all. The control structure is simpler , the operating systems is

more reliable and it takes up less of the system ’s time and resources.

The next best way to spend money on hardware is to buy some content

addressable memory to use for storing system queues. This will allow us to

post a request for service in one machine cycle and to return the highest

priority request—for—service in one cycle. It is hard to imagine how this

speed might be improved . It is also hard to imagine how an operating system

could get along without having a queueing mechanism of some kind . There

are other places to spend money, some of them profitable. One can provide

sophisticated memory and I/O device protection hardware . With content

addressable memories protection can be provided in a very flexible way

that permits each user to have his own access map to storage independent

of all other users . Hardware registers to permit renaming blocks of storage ,

as is done in a virtual memory , turns out to save a lot of moving of infor—

mation or else waste of space due to external f ragmentat ion. Other than these

we found no place that hardware would be s ignif icant help to an operat ing

system.

- b

-
,
~ ~~~~~~~~~~ --~~~~L~ ._ ~~~- ~~~~~~~~~~~~ -

3

A Small Real Time Operating System Using CAMS

In order to focus our efforts , we decided to concentrate on a dedicated

real time system such as might be found in many mini—computer applications.

We assum~a system with a limited number of jobs to do. These jobs are

known at system generation time . Because t h i s is a real time system, response

to external stimuli must be rapid and we mus t select at any instant the highest

priority job ready to run and give that job what it needs to accomplish i ts

purposes. This implies that each job will have a priority that may vary

depending on the part of the job being carried out and may vary depending

on the imminence of that job ’s deadline . It further implies that we must be

prepared to preempt a job when another one of higher priority becomes unblocked ,

There will be jobs in the system that may sleep for a long while waiting for

an external event but that require high priority service once that event occurs.

Other jobs will be awakened periodically so that they may study the state of

the world and react appropriately . Still other jobs, such as diagnostic

• routines , will run only if there l~ no th ing else to do.

Motivation

Brown, et al. (1) identified 15 “system primitives” for an operating

system of this type . Furthermore , they picked two, namely queue manipulation

and message passing , as especially time critical. Their model showed that if

they could reduce the nucleus service time by 70% they could expect a decrease

in response time of 25% (2). They were hesitant to claim that the movement of

these two primitives to firmware would accomplish this 70% reduction in over-

all nucleus service time .

An examination of M.M.S. (A Modest Multiprogrannued System, Eckhouse (3))

showed a service time of 240—295 microseconds (on a PDP—ll). This system has

4

only one service call , “queue ,” which takes the running task , puts it on the

ready list and takes the next highest priority ready task and makes it active .

This system has no interprocess communication . In addition , MMS has only four

levels of p r iori ty each on a separate queue so that the Enqueue operations can

be done relatively quickly.

Sta t i s t ics from other operat ing systems (Foster (4) and Bateson (5)) give

a range of “Length of Execution” of system routines (tasks) of 50—200 with a

median of arcund 100 ins t ruc t ions executed between service calls. With an

average instruction time for a PDP—ll (on which MMS was wr i t t en) of 4 psec ,

this implies 40% of the CPU time is spent in the operating system nucleus .

This agrees well with Brown ’s 37% estimate.

We believe we can cut down service times for this type of system to

80—100 microseconds f o r two reasons . First , all Que uing and Dequeuing

operations will be done using Content Addressable Memories (CAMS). These

wi ll be special purpose hardware that will perform operations on data. Our

estimates show that these will interface with the PDP—ll as a 1 microsecond

memory and not slow d own the execution of instructions .

Second , all other primitives (i.e., block , unblock , “P” and “V” on

resources and semaphore , etc.) will also be done using these same CANS

so we expect a s imilar speed increase for all functions of the system.

An Overview of the Operating System

In order to understand the following discussion it is important to

understand the concepts of the Job and Task. A task is a small unit of

processing ; it is typically “request an I/O device ,” “use an I/O device ,”

or “request a page of memory .” Each job consists of a list of tasks to be

performed much as a program consists ~ f a l i s t of instruc tions. Serving as

• .- - -
.. — - - - - __________________

5

a pseudo program counter we have a “job pointer” for each job which points to

the next task to be executed . When a task is finished we “advance” the job

pointer of this job . The job pointer now points to a new task to be performed

for this job . But since there are many jobs competing for the use of the

CPU we cannot just plunge ahead and start this new task. Instead , we post

a “request” on the ready queue . This request says which job wants what task

and at what priority . When this request has been posted the system then scans

the ready queue and selects the request with the highest priority and executes

that . The task selected may belong to the previous job or to another.

Tasks which use resources should be proceeded by tasks which request the

assignment of the resource (P) and followed by tasks which release the resource

(V). Details may be seen in Figure 1. It should be remembered that all jobs,

and tasks, are specified at system generation time . Each task within a job will

have its own priority associated with it. There can be several “calls” of a

task in the same job (at different points) and in several jobs. We make the

stipulation that there will only be one task per job that is active in the

system at any one time . By active we mea n on the ready list or running . This

simplifies the saving of context when a task is interrupted . We allow looping

of tasks in a job to accomplish chores such as outputting multiple lines to a

line printer.

The ready list or ready queue is kept on one of the four system CANs .

It is a list of tasks with their associated priorities and the number of

the job for which they are running. There is also a “status” bit called

busy/idle. ~~ make this bit a one if this task is idle. This bit is just

above the high order bit of the “priority ” field . Thus all idle tasks have

a higher “priority ” than any busy tasks. This busy/idle bit will be used

primarily for tasks that request resources .

- •
- -

6

~~~~~~

“

~1• I ~~~~~~~~ ~~~~~~~~~~

_ _ _ _ _ _ _  _ _  

~~~~~~~~~~~~

~~~~ 

-

~~~~~~ 

--

S~\~?c ~~~~~~~~~~

?~ .~~c , k1

“-
•

~
.- , -

) :

‘1t~ ~k,% l. oucLt

(r.) P,L~~~~L I.tr
•‘(~~ 9~~~~set~. b~~

• (4~~ ’ft ~~~~~~~~ ~~~~~~~~
Ho II’c~ o~~

C A

“~ ¶~~ t~~~~ .L
~~~~~~~~~~~~~~~~~ t~~ ~~~~~~~~~~~~~~~ ~~~~t ’~-r’

— I- —•‘~~ — ~~~~~~~~~~ I ~~

- - -- - -~~~ -  : - L ~~:~~ -- - - - - 
- .~~~~~



7

Main program

The flow of the “main program ” or job scheduler (see Figure 1) is this :

do forever

Begin

Current—task:= Highest—priority — of ( R e a d y_ li s t ) ; *

If Task—type (Current—task) = Request — resource

then begin

If Is — busy (Resource—Requested by (Current — task))

then begin

Task — status (Current — task):— Busy ;

Put — on — ready — list (Current—task) ;*

end

else begin {resource is Idle)

Disable — interrupts;

Current — resource:= Resource — requested — by (Current — task);

for all Tasks where Resource — requested — by (Task) = Current — resource

do Task — status (Task):— Busy;*

Update — 10 — CAN (Current — tark , Current — resource);

Resource — status (Current — resour ce) := Busy;

Enable - in te r rup t s ;

Advance (Current — task);

end

else begin {Not a request resource task)

Execute (Current — task);

if not (Task — type (Current — task) = Resource — use or

Task — type (Current — task) = Clock — wake—up)

then Advance (Current — ta sk ) ;

end

end

_ _ _  ~~~~~~~~ - - - - 
-
~~~~~- .

.. - -

8

*Thesc are “primitive ” CAN operations as e x i l a i n e d later.

Each resource has two words associated wit h it: one is the “resource use

f lag ,” and one , cal l ed “old ,” Is the task and job number of the current user.

The execution of a resource use task is:

1. copy the “current “ task and job number into “old ”

2. set up the I/O conditions (i.e., give a start to the paper tape reader)

3. return to the mai.i Loop.

It i~ assumed that the I/O Interface is “smart ” enough to generate an interrupt

if a sufficient time period has elapsed to justify a time out .

When an interrupt occurs indicating that the I/O is completed , we put t h e

task that was interrupted (called “current ”) on the ready list as an idle t n - k .

Then we do an advance for the “old ” task which was waiting for the interrupt.

Th is allows f or preemp ti on , since the previously running job (current) and the

job which just had an I/O completion (old) from an interrupt can “fight it out ”

based on their priorities to see which will be taken from the ready list next.

For example , a job which just had a task return from a disk interrupt would

normally follow that task (on the job list) with a high priority task to use

the disk again or release it (with a V t;i~ k . We would want this to be done

before we would want a low priority task (that was running) to finish. We do

not want a “valuabl e” resource like the disk to sit unused with its use flag

set busy.

A typic al resourc e release task (or “V”) would perform the following :

1 . make resource idle

2. make all other tasks on the ready l i s t tha t are reques t ing thi s

resource idle (competitors)

3. update the memory protect or I/ O protect CAM t o show that the resource

is no longer owned b y th is job

4. return to main loop.

---- -- - --

—~~

9

Content Address able Meiiu rles (CAM)

Of the f o u r s y s t e m CAN ’s two w i l l he u’~ed for queuing operations; these

are the Ready List and the Clock Wake Up List. Each “queuing CAM” cons ists o f

a mico—programmed control register , a data register , a comparand register , and

a numbe r of da ta cells each 24 bits in w i d th . The number of da ta cells wi l l

4 depend on the application. Each cell Is divided into four fields A , B, C, D of

1, 7, 8, 8 bits respectively. See Figure 2.

Each 8 bi t instruction to the CAM control word is decoded and the

appropriate action is taken on the data cells , comparand , and data register.

Instructions to the CAM control word are:

1. Find Greatest

Find the cell with the largest number in the A and B fields (Busy/Idle

and Priority) and return the C and D fields of that cell (Task and Job number).

2. Make Tasks Busy

Find all cells tha t match the C field of the comparand and write a zero

in their A field.

3. Make Taks Idle

Find all cells that match the C field of the comparand and write a one

in their A field.

4. Clear Entry

Find the cell that m at c h e s the C an d 9 fields of t he comparand and writ~

a zero In the D field (there is no job number zero)

5. MaJ’.e En try

Write fields A , B , C , D into the (first) cell that has field D set to

zero . (If none , this will cause an interrupt.)

6. Exact Match On Time

Find the (first) cell that matches the A , B , C f i e lds of the comparand

and return the D field of the cell. (If non return zero.)

- — —--~~ -• --- -- - - ---—--

V
10

[A I B 1 C D

1 7 8 8

Field For Ready List For Clock List

A Busy/Id le

B Priority 16 bit time

C Task #)
D Job s Job #

Figure 2

- S -. • .- - - -~~~~~~~~~~~
,
. - -~~~

I.

II

Four Uses for CAN ’s in an Opera ting Sys tem

We have found four places within a conventional operating system that

would prof i t from the use of CAM ’s such as we described above . There may be

more but these four are obvious . If once a machine was built with some CAM ’s

in It , we bel ieve that more ways to use them would be discovered very shortly.

The four places we have investigated are :

job—task request list

clock wake up list

m emory access control

i/O device access control

We will now discuss these app lica tions in turn and explain some of the

reasoning behind our choices of parameters. -

Job—Task Request List

As outlined above , each job has a task It wishes to perform. The

collec t ion of these task reques ts is called the “ready queue .” This task

mi gh t be “waking up” at a certain time or waiting for an external event or

computing a square root. Associated with each task entry on a JOBLIST, we

have a word describing the priority at which that task needs to be run for

this job . Because the PDP—ll has 8 bit Byte instructions , we have elected

to make our CAMs a mul tiple 8 bi ts, namely 24 bits , wide. We have allowed :

8 bi ts for 256 different jobs

8 bits 1 r 256 d i f fe ren t tasks

1 bits for 128 different priority levels

1 bit for Busy or Idle

In a straight conventional computer , it would be necessary to either

keep the “ready queue ” sorted by p r i o r i t y , search the queue for the highest

priority task each time we wish to dispatch a task or have 128 separate queues.

-
- - . c~

_
- . -- - •-~~~~ —~~~ -~~~~~~~‘ ‘—

12

An addi tional complication for a conventiona l machine is the status (busy

or idle) of a task. The usual way to handle this is to provide a “blocked ”

queue for task requests that are waiting for “busy dev ices .” When a device

falls idle a conventional operating system mus t search the blocked queue for

the highest priority request waiting for this device and transfer that request

to the ready queue where it then competes with all other ready requests for

the CPU. If an interrupt occurs which triggers off a high prior ity requ est

for a dev ice , caution must be exercised to ensure that not more than one

reques t for a possibly busy dev ice appears on the read y list.

The use of a CAN in this place greatly simplifies the situation . When a

request for the execution of task is generated (by the execution of the ADVANCE

routine), we Insert a task request in the CAN with the job number , task number

and priority as determined by ADVANCE . We set the status bit of the request

to 0 or 1 depending on whether the task Is known to be idle or busy . Since

both the blocked and the ready queues are in one CAN, there will be no need

to move entries between them.

When we are read y to dispa tch a new task , we search (in about one micro-

second) the entire CAN for the request for an idle task which has the highest

priority level. This task is the one to be dispatched and the request for this

task is removed from the CAM . If this task involves a possibly busy device

(for example, a line printer) when the device goes busy part of the code for

the task will access the CAM and set all requests for this task busy . When the

device falls idle , we simply perform the inverse operation marking all requests

for this task as idle and hence as candidates for dispatching .

When an interrupt occurs , we post a request in the CAN for the task that

was curren t ly executing and make it an idle task. Then when the interrupt

handler is f in ished , we go back to the dispatcher and if the task which got

.13

interrupted has the highest priority, we go back to that task . Otherwise ,

we go to some other task with a higher priority .

Now suppose we are executing a task for a job , J, involving the line

printer and an interrupt comes along saying that the disk has finished a

transfer for job K. Job K now needs to use the line printer . It look in the

printer status word and finds the status is busy so it enters its request in

the CAN as a busy request. When J was interrupted , it stored an “Idle” request

in the CAM so when the interrupt has been serviced , we guaran tee tha t J will

be the first one to get the line printer , line by line interlace of two jobs

not being the most propitious way to employ a line printer .

The reader will note that the use of a CAN has not reduced operating

system design to child ’s play but that the dispatching and interrupt routines

have been considerably simplified by its use.

Clock Wake Up List

The second place we have found CAMs useful is in the clock wake up list .

Many tasks need to be activated periodically or after a certain amount of

time has elapsed . Meanwhile they must sleep quietly using as few r~~ources as

can be arranged . Typically, they sleep on a clock—wake—up list. When the real-

time clock interrupts , this list is examined to see if any job needs to be

awakened at this time. Once again, either the list must be kept ordered or it

must be searched . The use of a CAN elimiates both requirements . One task

available in our system will be of the form “wake me up after N time units

have elapsed ,” where N is an Integer less than 65,536. Current time is kept

as a 16 bit number. This number is added to N and the sum modulo 216 is stored

in fields A , B, and C of the request. The number of the job making the request

goes in field D.

On each tick of the clock , we interrogate the CAM to see if any requests

____________________________ __________________________ — --
~~~~~~ S

- 
S - - ~_1~~__~ 

P - -
-
- - .



14

for this t ime are posted . If there are , we do an ADVANCE for each job

desiring to be woken up at this time . With a 60 cycle clock 64K tIme periods

come to 18.2 minutes. Sleeping period s longer than this must be created by

using two or more maximum periods. Provisions for looping in a job list have

been included in the system design.

Since the clock interrupt will occur with high frequency, the simplicity

of this scheme will have relatively large payoffs in system efficiency.

Memory Access Con t rol

In a dedicated system such as the one we are concerned with , it would

seem reasonable to store most programs in ROM and keep them permanently

resident. Nonetheless, working space can sometimes be profitably shared

between two or more jobs and a provision for controlling read—write storage

access can serve as a prototype for the handling of other resources of similar

character .

Each job in the system is assigned a job number from 1 to 255. Job

number zero is reserved for  the system i t s e l f .  We will add a “peripheral

device” to the PDP—ll which is actually a register to hold the current job

number .

We will divide main memory into pages of 128 words (256 bytes) each.

With an 18 bit main memory address this allows a potential 1024 pages.

When a memory reference occurs , the 8 bit current job number and the 10

bit number of the page addressed are concatenated into an 18 bit word and

presented to the memory access control CAll. If there is an entry in the CAM

which corresponds to this 18 bit comparand , this means that this job is per—

mi tted to access this page and the reference is permitted to proceed . If

there is no such entry then the memory reference is inhibited and an interrupt

is genera ted. When job number zero is detected , the CM is bypassed and the 

— —- --5— —— — - -——-—-- -5—

— ~~~~~~~~~~~~~~~~~~~~~~ - - -
.-- - ~~ - - ‘~~ - S --



15

sv st e l r i  Is given ) I ’ I u i i s s i o f l  t o  R ( ( S s  any memory ce ll . We w i l l  mak E t hI CAM

l I r
~~

’ ( ‘ r ~
( I

~ U ’l ’ so that entr ies rail reside ther ~ sein i perman ently ari d in f a c t  so

that ( ( I ) re I ir:in one ~ob - : i r i  hav e a( - ces s N a I - I  t ’ e In  c ’ ; I so we w Isli to share a

SigI ’  I I  I W OO l two or more  j(Ihs . If most pr og  ran is  are  stored Eu ROM , we do not

need I ( I  p I  ot (‘I t, them f rom ia I n~, overw r I t t  ~ii md the CAM may be made cor respond-

ingly small er to give protection onl y to read/write memory.

i / O  N n t  r o l

In the PDP—IL , all , peripheral devices are given memory addresses in the

range from 760000 to 777777 p r o v I d i n g  40% possibl e addresses or 8192 bytes.

To say this another way, when hits A<l7— 13> are all ones then hits Ml2—1>

sei~~c~ eri e o f  4096 device reg Esters not all of which actuall y e x i s t  in any

given installation. We will break these 4096 registers into 1024 blocks of

f i r t i : cegisters each and provide protect inn for each such block present in tlit ’

-~ystem . E~;u:Ii i/O dev ice is assigned to a block or blocks and Its regist or ’- are

a l l  in  two or nor ,  idj acerit blocks . Examination o DEC ’s peri phera l  address

a s s i g n m e n t s  indi cates that th E ; will he in  ac c or d  w i t h  their reronunendatinri s

With this scheme , we can a s s i g n  I / O  d i e~ ens to  sp e c i f i c  jobs w Ithout i n t e r f e r e n c e .

Th e 8 b i t  cu r r e n t  job n u m b e r  Is ( ‘ ( ( , i I ’ .’ i t  ona t e d  w i t h  t he t o r i  address hi t s A~ I ‘—- ‘i--

and p r . - a e n t I ’d  to an I/O ( l i l t  rol CAM . ‘ I f t e  a c t i o n  of t h i s  CAM Is then identi cal

I I  t h e  n ) I r r r ( ( r y  ; ,ec t ~ss (- l I n t  m l  CAM jus t doma r I h o l .  We m u s t  a ’ 1 c ’ t  w h i c h  of tin se

two CAM ’s i n  to ( ‘ l i n t  m l  access  on t h e  has I s  of t he  h i g h o rder  address  h i t s

A 17—1 ’i - . If these a n ’  ; l l  I r~~~s , then the 1/0 control CAM Is used . If not ,

t h e  m e m o r y  access coot rI 1 CAM is h rough t in to  p 1  a v .  F i g u re  3 shows in schema ti c

form how t h i s  mi ght be accomplished.

C o n e i r i s l o n s

We lei vi examined t o u r  places in which content addre ssable  memorie s cou ld

— —--5- - 5
-- —-5 5’- —

~~---—~~~
- —- 5—- —

-

~ 

—



- ‘~~ S -  ~~ ~~- • — - - S - ‘ - -

A <12. 03>

_ _ _  5 — 5 _ _ _

_ _ _ _  

1 
_ _ _L~~vL~~ ’~ I1 ~~~~~~~~~~

_ _ _ _ _  
S

C-~i~~ 
— -I--- —, 5 —-— -— —S-i

t~~w~o’t~ P~ces~ 1/0 c~~4~I

C!~pi

t %~i~~b~Itv r

A C
3 

‘ -

~~~~~~~~~~~~~~~~~~~~~

H
-

‘

~

-
‘

fl~1(TV U~ * S

c ,
~; ,~+

%i0’i(~~~~~
~~~~ C., t”~’ t ~ f ~~~ 

(i.p-~~
j•/t’l ~~~~ k~L elI o~ tV~~~~ Q* t .  ‘~

-- - S . , _- 
-_ _ _ _ _  _____

5— —~ ---——---———. ---- ———--- — - -- - —-S - - - - - - 5 ~~- -



17 . ,,
~~~

subs tan t ially enhance the behavior of an operating system. Used to implement

the ready and blocked queues and the clock wake—up list , they offer increased

speed and simplified software . Used for access control of memory and I/O

devices , they provide services not presently implementable on a PDP—1l in

real time. There are undoubtedly other places where CANs could be used and

as we proceed to write the operating system described above, we may discover

them.
‘

— — — - -— —5—- -‘5-—- -

-

~
., , - ‘

~
- , -

- ~ ‘- ~~~~~~~~~

18

References

1. Brown, George E., Eckhouse , Richard H. (ir.), Goldberg, Robert , P.
(1975) Operating system enhancement through micorprogramming .
CENTACS Report No. 52, U.S. Army elec tronics Command , Fort Monmouth ,
New Jersey. August.

2 . Br own , George E., Eckho use, Richard H. (Jr.) , Estabrook , Jay A.
(1976) Operating system enhancemen t through microprogramining: design
and Implementation. CENTACS Report No. 53A , U.S. Army Electronics

S S

Command ,,Fort Monmouth , New Jersey. November.

3. Eckhouse , Richard H. (Jr.) (1975) Minicoj~p,uter Sys tems: Organiza tion
and Programming (PDP—ll). Prentice—Hall , Inc.: Englewood Cliffs, New
Jersey . Chapter 9.

4. Foster, Caxton C. Private communication .

5. Bateson , A .P., Ju , S.M. , Wood , D. (1970) Measurements of segment size.
Comm . ACM 13, 3. March . 155—159 .

— -- —-
- -

-
~~
--— - ‘ -- 5 -

S
- -

19
’

Preliminary Design of CAN Ilirdware

In this section we will discuss the design of the Content Addressable

Memories (CAN). The design goal that we used were :

1. Minimal Chip Count

2. Reasonable Fast Speeds

3. No Custom parts (Standard TTL Components)

Obviously goals 1 and 3 conflict with number 2. As a compromise we

decided to implement the CAN with a bit serial , word parallel architecture .

This means that each word rather than each bit has “local intellegence .”

This minimizes the amount of comparison circuitry needed . It also means that

3ome speed is sacrificed in that each CAN operation is done on each bit of

each word in a serial fashion even though the operations are done on all words

in pa ra l l e l .

The cycle time (pe r bi t) was chosen as 100 nano seconds . This is wi th in

the speeds of Schottky TTL and gives adequate overall performance . It was

also decided to micro—program the CAM operations rather than use discrete log ic.

The micro—program controller will be able to operate at 10 MHZ speeds and it

will allow maximum flexability for future changes to the system. It will

also allow for CAN operations other than the ones needed specifically for the

Ope ra t ing System to be developed as needed with l i t t le or no changes to the

basic ha rdware .

The CAM is designed in 64 word x 32 bit blocks. 32 bit words are used

because we know we need at least 24 bits for the Operating System operations

and 32 is the next multiple of 16 (the width of the words in the PDP—ll).

The 64 word block is not as limiting as it sounds , the blocks will be able

to be cascaded to any length up to 16 (1024 words). The size of 64 words is

convenient size to put on one printed c i r cu i t or wire wrap card . (about 120

— — . - 5 - - —‘---5 --5 - - . - 5-.-- - _ _

____ 5 _~~5

20

packages). We propose to build 12 of these cards plus the one controller

card tha t will drive all of th~ni (independe ntl y or in groups) and interface

to the PDP—ll Unthus.

The CAM word is designed around a dual 32 x 1 bit Schottky TTL RAM

chip (Sign etics 82521, 86521). This memory was chosen because of it ’s ability

to write independently into either (or both) of it ’s two 32 x 1 memories .

These have typical access times of 25 nanoseconds (50 max). As can be seen

in f i gure 1, each word also needs an Exclusive—Or gate to compare (bit serially)

the contents of the CAN word to the contents of the chosen comparand register.

Add itionally each word needs to have a gate to conditionally allow its contents

to be read out of the CAN. Note that we have implemented a multi—read as

well as multi—write capability. That is, all words that have their tag

bits set will participate in read and write operations .

The tag register is buil t with 74279 Quad S—R latches . S—R latches are

used since any single bit mis—match between the comparand and the CAM word

should reset the corresponding tag register bit (Tn) for that word. The S

inpu ts are used to accomp lish the “set all” Command . Figure 2 shows the tag

register and the select f i r s t (Sel 1st) logic which is used to pick the first

responder and reset all the tag bits of “later” CAN words . 745158 Quad 2

input multiplexer circuits are used to select between the mismatch signal

and the select first chain to generate the resets to the Tag bits . A strobe

signal is used to enable these reset signals only after a delay (about 50 nsec.

for mismatch and about 500 nsec. for select first) to allow for gate propagation

t imes.

Although the select first chain could give us the answer to the question

“are there any responders” the propagation time is too long for the cycle

time of the CAN so there is another set of logic (figure 3) to monitor the

tag bits and generate a S0ME/NO~~ signal. This logic tree will be able to

_ _ ~~~~~~~~ -~~~~~~~~~- _ __ _

I

21

respond fast enough to be used as a test by the micro—controller. Not shown

in the diagrams is the logic to connect several (up to eight) of the 64 word

blocks together to allow for a maximum of 1024 words . Also there will be

c i r c u i t r y to cascade the select first and SOME/NONE circuitry .

The ‘ont ro l c i r c u i t r y is shown in f i gure 4 , 5 and 6. Figure 4 indicates

the i n t e r f a c e to the P D P — l l Unibus , the comparand registers , the comparand

multiplexers , the read dec oder , and the CAM control word. The micro code can

select one of four 8 bit coinparands to be compared against the contents of the

memory in ei ther tr ue or nega ted f orm (CO is simply a source of zeros). The

read decoder is necessary since the data is read out of the CAM words in a

bit serial mode. The data in the CAM cont ro l is used as a branch address

in the micro code . This is similar to the Branch On Op—Code (BOOC) operation

used in microprogramed computers . Not shown is the additional circuitry

necessary to specify which subset of the up to 16 64 word block are to be

operated on. This will be done with discrete logic and will be transparent

to the micro controller.

Figure 5 shows the micro controller itself. The microprogram will be

stored in 74S471 type PROM or 74S37l t ’,’pe ROM chips. A preliminary count

;~~~~) W S that about 128 instructions will be needed to execute the six CAN operations

for the Operating System. We have allowed for 256 instructions so that we may

add other operations as needed. Typical branch control circuitry is shown in

f igure 6 and the format of ~he microprogram word is shown in figure 7. There

is extra room in the micro word to add other controls and tests as needed for

other CAN operations . The following are outl ines f’ .ecution of the

six known CAN operations .

22

1. Find Greatest (used to find the highest priority Task in the Ready list CAM)

Typical PDP—ll Calling sequence:

MOVB #FGTST , CCW

MOVB CDATA , TASKN

MOVB CDATA , JOHN

CAM Al gorithm *:

SET TAG

WRITE (CØ , 31) ; Bi t 31 is used as a f lag

COMPARE (C’, 0) ; Busy/Idle Bit

WRITE (C~~, 31) ; Keep only those that are Idle

FOR I~~~ l to 7 DO ; * *

BEGIN

SET TAG

COMPARE (C~~, 31) ; See if any active cell

COMPARE (Cd , I) ; has th i s bi t set

IF “SOME ” THEN ; yes

BEGIN ; make others inactive

SET TAG

COMPARE (C~ , 31)

COMPARE (cØ, I)

WRITE (CO, 31)

END

END

SELECT 1st ; To reai out the RASKN and JOBN

ZERO CDATA ; It is an RS latch

LOOP ON SELECT 1st TIMER ; fo r p ropi gat ion delay

FOR I = 8 , 15 DO

READ (I) ; TASKW

~~~~~~~ •_~~~~ 
_ .. _~~~ _ . .5 _ _ i~~ —~~~



23

ZERO CDATA ; ***

FOR I = 16, 23 DO

READ (I )  ; JOBN

SET TAG

WRITE (CO . 31) ; Reset ~~1 Flags

BRANCH TO NOP ; for new CAN operation

* For the following Algorithms the following conventions apply. WRITE (CX , Y)

means to write into CAM Bit address Y the corresponding bit from comparand CX.

CX implies inversion. A similar meaning is given to QOMPARE (CX , Y ) .  READ (Y)

simp ly specifies the bit address of the CAM words that will be read .

** For simplicity “For ” loops are shown. In actuality these loops will be

unwraped in the micro—code to speed up operations .

*** Handshaking with the PDP—ll is not shown but it will be done in the micro-

code by means of the MASTER SYNCH test and the SLAVE SYNCH CONTROL BIT.

lA. Find Greatest (this version is faster , but it assumes that the priority

is coied as one bit per priority level rather then levels 0—128). Since

the 11 allowc only 4 levels of priority there is some justification to

assuming that 7 levels will be enough for  most app lications .

FOR I = 1, 7 DO

BEGIN

SET TAG

COMPARE (C~ , 0)

COMPARE (Cø , I)

IF “SOME” THEN

BRANCH TO Li

END

Ll: SELECT 1st
(* READ IS THE SANE *)



24

2. Make Entry  (used to pos L a r eques t  in t h e  Ready List CAN, or Clock

Wake Up CAN)

PDP: MOVB B/I — Priority, Cl*

MOVB TASKN , C2*

MOVB JOBN , C3

MOVB #ME, CCW

Algor i thm :

SET TAG

FOR I = 16, 23 DO

COMPARE (CØ, I); Find Job 0 the Null Job

SELECT 1st

IF ‘NONE ” THEN

BEGIN

INTERRUPT;

B RANCH TO NOP

END

LOOP ON SELECT 1st TIMER

FOR I = 0, 7 DO

WRITE (Cl , I)

FOR I = 8, 15 DO

WRITE (C2 , I)

FOR I = 16 , 23 DO

WRITE (C3 , I)

BRANCH TO NOP

* Cl , C2 will get the upper and lower byte of the Time for the Clock Wake Up List.

** If the Ready List CAM is full (no Null Jobs) the micro—controller will in-

form the Operating System by generating ‘in interrupt.

- .-~~— S ‘ 5  - - - - — — -

- - - 
.,~~~~~ S -  ~~~~~~~~~~~~~~~~~ -



25

Clear Entry (used to remove a request from the ready lis t or the clock

wake up list CAM)

FDP : MOVB TASKN , Cl

MOVB JOBN , C2

MOVB #CE , CCW

Al gorithm :

SET TAG

FOR I = 8 , 15 DO

COMPARE (Cl , I)

FOR I = 16 , 24 DO

COMPARE (C2, I)

FOR I 16 , 24 DO

WRITE (cØ,  I ) ;  NULL JOB

B RANCH TO NOP

4.  Make task idle

PDP : MOVB TASKN , Cl

MOVB #MT I , CCW

Algorithm:

SET TAG

FOR I = 8, 15 DO

COMPARE (Cl , I)

WRITE (CØ , 0)

BRANCH TO NOP

5. Make task busy

PDP : MOVB TASKN , Cl

MOVB #MT B , CCW

Algor i thm :

— . —~~~~~ - — — . !i. ~~_ . _ _ .. . 
_
~

_ . — ‘ -  
.. —5—--- _ . ‘i__~_ ,  -5



26

SET TAG

FOR I = 8 , 13 DO

COMPARE (Cl , I)

WRITE (~~ , 0)

BRANCH TO NOP

6. Exact match on time ( fo r  the clock wake up l ist)

PDP: MOVB TIMEO, Cl

MOVB TIME 1, C2

MOVB #EMT , CCW

MOVB CDATA , JOBN

Al gor ithm:

SET TAG

FOR I = 0 , 7 DO
S 

COMPARE (Cl , I)

FOR I = 8, 15 DO

COMPARE (C2, I)

SELECT 1st

ZERO CDATA

IF “NONE ” THEN

BRANCH TO NOP

LOOP ON SELECT 1st TIMER

FOR I = 16 , 23 DO

READ (I )

BRANCH TO NOP

_ _ _  ~~~~ - .— ~~~~~~~~ . - ‘~~~~ 5 -  - -



27

Package Count 6 x 32 CAM

82521 Dual 32 x 1 32
74586 Quad XDR 16

74503 Quad Wand 16

64

745158 Quad 2:1 max 16

74279 Quad SR latch 16

74532 Quad or 16
48

745133 13 input  nand 5

74504 Hex inventor 1

74530 8 inpu t nand 1

119 packages

S 
- , 

~~~~~~~~ 
- - - 5 - _ :~~~~~~~~ ~~~~~~~~ I~~- -- --

28 j

r ~ __ ~~ I~~ & ~ (-~ ~ - L ~ ~ ‘T Q~~ ‘~~ ~~~ c~.

I ~ ~ 2~~L ‘-i.~ ’

I -

~~ /
-~~~~~ ~-‘ - ~~~~ A ~~ ~~~~~~~~~~~ L-~--~ ~ ~~~~~

-~~~~~~ ~~~~“- ~~ I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ L _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _

Z 5_~~~~~~

L~~~~~’ ~~~~~~~~~~~~~~~~~~~~~~

‘I  
? b à

- ~~~~~~~~~~ ~~~~~ ~t’4’~ 1.? (. ~~~~ 4

I ¶).~ _~~~ ~~~~~ ~~~~~~~~

-~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~‘~~~‘
~~~~~~~

t
~~~ —~ L\’~ 

D-~ C~~~ i~ (‘.-~~
-
~ -\ ~~~~~~

- ~~~~~~ - .~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Z .~~
l/ 5~

(-
“
1-

~ ~~~~~
~~~~~ “

~~ ~~~~~~~~~~~~~~~~~~~~~~~

~S & D C~-~:~ ~~~~~ 4 t(  ~~~~

I ,

~ ) ~)~~) _ ~~~ ~~~~~~~~~~~~~~

Cr  - .  
~~~‘&‘ L’~ ~ ~ ~~.— ‘ 1 ~~ 

L L~ ,

1’HjS PAGE I-S BEST QUAL ITY P cnc,&ai1i
I ~~~~~~~~~ (XM-~Y FURNISHED 1’O DDO ~~~~~~~~~

- - : . . - - -- ‘ . ~~~~~~~~~~~

‘4%
4 0

‘—I
I o

.5— f —

• —4
I

,‘ ~.
I ‘ _.,~ o

,~ ~ -1
~2 A C

,j

E~ ;‘ ;
~~~—

- _ _

p l i wl , I~ 
(.1 ~ -~~

~1 -SI

i t  _ _ _• J S c ~~~o
A.

I 
— 

-5 

‘-~~(



- _ _ S _ _ _ _~ I. - - ~o
- ~,J_~5- ‘ - 5 ’

‘—5---
‘

—5-
’

I’,

r o ’ ) 7l

~i~~~
,.

~~ .L -~~~ o
5’-

:V
- ‘.5 ‘j  — 0‘--‘ L4i q,

_~ ~~~~~~~~

_ _ _  _ _ _ _ _  

:~~~ 
f ’

~___— — ____ —-

—

~~~~~~~ 
~~~~~

-- 

_ _ _  ~ ~

_  ~~~~~~~~~~~~~~~~~~ ‘a 

_ _

__ - ~~~~~~~~~~~~ 

- -~~~~~~~ 
y - - - 

~~~ —

I’ ,

-
_ _ _

-51 _ _ _ _ _
-

II

It_I I I..i I ~4J

- I I ~~~~~~~~~~

_ _

-

H

— - :~~~~~~ff ~~t .- - . -

S
V

- - -5- . ~~~

1

- S- ~~~j~~~_-5 S S S-5 .5_~~~~~~~~~~~~~~~~~~~ _ -5-

2.

~ 1
4

~~~~~~

—

-- --5--- - - - 

-
~~~


I
- —-—~~~~~~~ --- - -5-— - — - — -

5;,

.5— ‘0 c_I c
s
~
’i I I) ‘--- A ‘

/ -
~~~~~~

- 
— (~~

I

-~ ‘1’I ~~~~~~~~~

‘-.5 ,, ‘~
J o — r 

-
— -, — (  Ij~

o __~
_ ,  t -~~ - .5

-J ~c 7 ~ ~1-5. JJ ‘
. or

j~~~j_
• ~~ a

‘.5_i .. ~~ .-1 
4 • 4 d_ 

‘l
— 0 ~~A— .5-_I .1 —

.1 (SS
ç.~ ;~ ~‘i-‘

Ic. 

~~~~~~~~ ~;qo L) 
~~~ 

— -
•
~

S 

-I

_  
c:~~~~~~~. 

‘4

j

I 1 0  )-
.5— _______ J — •J 5 -

’r~ 
•_J

I I~~~~~I 
—

~~~~~~ 

— —

I Li
_ _

•~~

1—

L

~~~~ - I‘I-”A. -~ / , 
‘I

L) 
/ $\

I 
~~~~~~l-5-_~J ‘~L~~ ) 3

‘—5--
~~~~~~~~~~ ‘~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  —- ——--5--— - - — — —-5 —.- -_ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _

5
- ----- 5 -  - 5  ~~~~~~~~~~



.~~~ -- -- __ 
-- - - 5 - ----. -

5
’.—

0 0

rT) -

. 5 . -  (L
o r — . 

5 — —

£ -i
US-

£ a o ~~~ .... ‘ ‘2
0 .5 .

_______

•1

~~~~-‘ r I-

pI ,:~~) &,•.-~,~ ~~~~ ~~~~~~~~~~~~~~~
- - 1

~h1

-•~I 1 I I I 1 1 - I~
_

j i —a -I .1

_____ ~~~~ ‘j:I ~~~~~~~ I C ~

?1
~~1

L’

-

~~~~~~~~~
; L~ 

it  ~~~ 

~

- 

I
_ _ _ _  _ _ _  

£
-I -

.

6 *
_ _ _ _ _ _ _- --5— ___________ -.J ~~~i, ir - 

C,

0
-J .5—

-< 
~~ 0
-J

.5’ 
1

’

ILL-k .~~ ~u I-
3 - .’ 

~J 2
I, I l l 2 . ..

0~ ‘J o Ii
d r —4
‘.5 ‘4’ ()

I-. 
~~~
. —C 1 ‘—4

-~~~~~~~~

S

- - -- —- - - ~~~~~~~~~~~~~~~~~~~~~~
• 5 -. - ~~~~~~~~~~~~~~~

- -

-

~~
• 5

r
1 -5~ 7-~~~~

5-—’ 1.—
‘> 4 (I t 0

.4 z 4
4, Q J

‘ ~ r
-Q C

- - - -
. - - 5 — -~~~~~

‘- -
- -

~ S ~~~~~~~~~~~~~~~~~ -

35
- — - - - - L~~~3~~~ --

—S ,J

~
‘~~

$
V 4 .~ 4

‘—-5
I 4 ,._.

$ ‘I ~,
4

II

~ • ~4-.;
‘5

.
~ N O

_ _ _

— ; ~~5- .
V.) t.) - V 5— , , ~, 0

~, ~
-* ,-_i o f I~~ ~~

•
t O

~
S
~

-Sr -

- ,-
~~ ~1 ~~

I ‘4 •~

-
-
~j? -% 0 ~~~ ~~~ 0

° r 0 ~ 1 a ,
~ dI I

~~ ~° ~ -

°~~~~r’~ ~~~~~~ *-

_ _ _ _ ~~- .5-i
- -.5 /) (— q ~~j . 5--. -. I —

-,5
~

,. I IS
a 1 3 -

~~
-
~~

-

~ •~~~ ‘.J I

f) oI j ,j,.~

5—

-- ?Q I, ~~~~~~~~~~~~~ ~~ O~~~j n
-

~~

~ _~_
__

q3 -
~

‘
-.5

15- ~~~
cc, -

‘S ~~
-
I

_ _

w ~
-— r ., -

I-. ~ ~~ 1~ .~
)‘-

~

cC ‘•
.14~~~

2

~~
jL ~

-~~ I-
54

H
C I I) ~~~~~~ ~~

‘-H
-~~~ - _..___.~~~~~~~~~~~ ___________.____*~~.5-_ -

-

~~ - - - -

36

Power Requirements (Typ.)

Each xt~
82521 130 Mi1

74586 250 8000 MW
745O~ 70 2240

745157 250 8000

745175 300 9600

74532 140 4480

745133 19 209
74504 114 228

32 ,757 MW

32.757 Watts

I = 6.55 Amps at 5 volts

_ _ _ _ _ _ _ _ _ _ _ 5- -_ _ _

-
~~~~~~~~~~~~~~~~~ 

- -- - -



37

Br i e t  summ ary  of  t h €  rI  II ~~~~~
r l~ Ie rat in e~ ~~~~t e m

1 ) Ove rview;

KRONOS 2.1 is one of the operating systems for the CYBEk~ computer
fam ly. It accepts jobs from batch , remote batch and time sharing. Its

design goal seems to be a compromise between giving a reasonnable response

t ime to i n t e r a c t i v e -  jobs and insuring an overall high thrntichput .

The system overhead in the central processor is limited in compa-

rison to other operating systems since a large number of system functions

including scheduling, are perf ormed by peripheral processors . As a result,

K±tONO~ has a rather high degree of multiprogramming.

2)~ ystem Request mechanism,

When a program makes a request , it posts a descript ion of the request

in a fixed location of it8 address space ( i .e .  RAi- i ) .  The program can either

initiate a context swap (xJ instruction) to the system or continue

processing until the request has been taken into considera-

tion by the peripheral processor monitor. For most requests , the program

is suspeeded from the time it initiates the context swap (or f”- ~ the

time the request is taken into consideration by the system) until the time

the request is satisfied . This feature is called auto-recall. For data

transfer requests, the program can continue processing while the request

is performed. It is possible for the program to check from time to time

whether the request has completed . These requests are said to be honored

without auto-recall.

The context swap is8ued by a program exchanges the CP registers

with a block of 16 words in the system protected address space , This fea-

ture allows the Central Processor monitor to take the request into account
much faster than PE~J Monitor. If the request is without auto-recall and
the program issued a context swap, the control is returned to the program

once the request has been initiated.

—~~ —- - - —-
~~~~~ --- 

S

38

3) Basic program environment

A job is a sequence of program steps as indicated by a sequence of

control cards (ir the job is from batch or remote batch origin) or by a
sequence of time shar .ng commands. The only way to preserve information

from one program step to the next is through temporary or permanent
program files.

~~ . 1. _M~m~r~ mana~aments
When a. program is loaded, it is allocated a fixed , contiguous part

of the central memory , called Field Length (FL). The program address spa-
ce maps directly into this portion of the central memory . The RA intersal

register contains the absolute starting address of the field length and

is added to every address expressed during program execution . The FL inter-
na]. register contains the maximum displacement allowed in the program

address space and prevents the program from addressing outside of its

assigned bounds. The only memory request that a program may issue is I

MEMORY . Depending on the parameters, MEMORY will extend or reduce the
program fia1~d length at its high end . Any other system action like
compaction of the central memory or swapping of the active program is
totally transparent to the program .
3.2 e_M~ n~ g!m!n~ ar4 ~~~~~~~~~~~~~~

KRONOS provides an extensive repertoire of file management requests.
Since these functions are similar te the ones in other systems, they are
not reviewed here .

Data transfer requests - -. isple record oriented transfers

(WRITE and. READ , with ~, few v ‘~~n8) between mass storage and
central memory buffers. When ist. ir,.., a data transfer request , a pro-

gram has the option to suspend itself (request with auto-recall)
or to cestinue computing and periodically check for completion of the
transfer (request without a~ito recall). In the later case, the program
can suspend itself until completion of the r.que~b (by issung a RECALL
request), once no further proc~ aaing is possible .
;~.2 ~~~~~~~~~~~~~~

There is no provision for quasi parail~lism within a program in

- .

1•~~
5 -

39

KRONOS . From the system point of view , each program is a single task .

However , KRONOS provides facilities for a user to decompose his program

into an ”executive task” and various subtasks. The “executive” has complete

control of the “subtasks ” t within the time slice allocated to the program ,

the user executive can allocate sub—time slices to the subtasks~ the user

executive can protect itself from the subtasks and can protect
-

the subtasks from each otheri the user executive intercepts all systes

requests issued by the subtasks.

Besiées these pseudo tasking facilities, KRONOS enables a program

to suspend itself until a previous request is completed or for a certain

duration of time (RECALL requets). The ROLLOUT request is similar
to RECALL in that the program is suspended until a previous request can

be satisfied , an external event occurs , or until a certain amount of

time has elapsed. ROLLOUT differs from RECALL in that the program is

swapped from the central memory . From the system point of view , ROLLOUT

is preferable to RECALL when the expected waiting time is long . From the

program point , ROLLOUT and RECALL are logically equivalent.

Another feature relevant to task management is the possibility for

a program to create another job through the SUB~’1IT request .

~~~ ~rror handiingj
The MODE request allow a program to specify which central processor

exceptions (e.g.  division by zero , indefinite operand , address out of

bounds) should cause termination of the program and which exceptions are

:1 to be completely ignored by the system.
The ERREXIT request facilitates a limited amount of error recovery

processing. When issuing the ERRE XIT request , a program specifies a single
entry point to which control should be passed when a fatal error occurs .
Fatal errors include not only fatal central processor exceptions but also
exceptions that occur during processing of other requests like illegal PP
or CP requests , time limit , exceeded maximum number of files, or exceeded

file space limitationn .



40

Li. ) Subsystem Environments

KRONOS provides additional facilities for programs that are exten-
sions of the operating system itself , like TELEX , the time-sharing exec-
utive, or TRANE X , the transaction exe cutive . These facilities can be
r*~~hly classified between extensions of the memory management, file
management and interpr~— -e a8 communication primitives.

~~~~~~~~~~~~~~~~~~~ rnemo~y manag~menti

Subsystems are programs explicitly known by the system and. are
given the highest priorities. They are permanently resident in central
memory and cannot be swapped. -

Li. . ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
Subsystems have access to priviledge files and to the files that

have been submitted to the system for execution or that result from the
execution of a submitted job. -

-

Li. .~~ _I~t~r2r2ces! communication:
PPU program - Subsystem communications

A subsystem may request a specific PP program to be
S loaded in a PP for as long as the subsystem is in . central memory .

Further interaction between the subsystem and the PPU program may
take place through mailboxes in the subsystem field length .

subsystem - Subsystem communications:
Each subsystem may con .ain two buffers for messages in

its field length. To send a message to subsystem B, subsystem A
iasues an SIC request indicating message buffer indices for A and
B’ s name, When A issues an SIC request, the contents of A ’s message
buffer are copied to B’s message buffer. (by the master PPU)

A similar operation is available for B to get a message
from A. In this case, B issues an 11~B request , indicating buffer
numbers in A and B, and A ’s name . When B issues an I~ B request,
the contents of A ’s message buffer are copied to B’s buffer.

Both SIC and 1~ B can be performed with or without auto-
recall.

- - — r

41

5. Discussiun

A system like KRON O~ does not provide complete facilities for
tasking or interprocess communication . It only provides some mechanisms
that can be used to implement tasking or interprocess communication.

Because they are only simple mechanisms , they are easy to
implement, they are fast in execution, and they suit most applications.

The only problem with these is that the user has to devise policies and

conventions on how to use them , and the user program includes a signifi-
cant overhead to implement these policies.

On the other hand , if a system provides complete facilities for
tasking or interprocess communications, these facilities have to imbed

more elaborate conventions on their use. They would be more complicated,
slower , and less “general-purpose~~. however , applications for which
these facilities are well suited are easier to implement and do not

include the same overhead .
All in all , both approaches may yield the same throughput or

response time when considering Operating systems and application
programs together. But the potential for enhancement appears greater in
the second case.

In practice, it is difficult to look at operating systems from
such a simple point of view .

i) It is difficult to make the distinction between what is called

above a “mechanism ” and a “momplete servise~’. Obviously that

difference exists between interprocess communication in KRONOS

and interp rocess communication in MULTIC S. There is however no

sound criterion to make that distinction.

2) Facilities like tasking or interprocess communication are not inde-

pendant from other aspects of operating systems (store management,

protection, etc.)and result from complex design decisions.

42

However, this way of looking at operating systems may be practical to de-
cide what to do next. I suggest

1)A study (in fact most of the work has been already dons) of

possible hardware enhancement of basic mechanisms like:
- interrupt mechanisms.
- context swapping mechanisms.

- scheduling primitives.
- programmed requests mechanisms.
- basic techniques for interprocess communications
- tasking mechanisms.

in various contexts (virtual memory , multiprocessor orga.nisationa,
or simple PDP-ii)

2)The harisare enhancement of complete services in the context of a
well defined operating systems; e.g. take a standa ri environment
(some revision of the previous design.), a base processor, and
some well defined goal for the operatiig system (e.g. multiprogram
sing, segmented memory, minimize response time), and propose a fast
implementation , drawing upon the proposals of 1) above.

43

P r i m ~~t iv c l w ~~- i ions

The primitive functions of an operating system can be roughly

decomposed into:

1. Process (or task)ma.nagement.

2. Processor management .

3. Memory management.

4. i/o Management.

5. Exception handling.

This decomposition is for prsctical purposes only , for choices made in one

domain may seriously restrict the alternatives in another domain. This

document attempts to make explicit the various choices made when selecting

the prismitives of our basic operating system , and the interplay of these

design decision.

The goals of this design are indicated in the shopping list of table

1. In fellowing sections the five areas above are reviewed. For each area,

the various alternatives of each design choice are explicited .

t . Process Managements

1.1 Process Definitions

The first choice is whether the system recognizes the set of appli-

cations as one single program (e .g . aT-li without background job) or many

entities like tasks or processes (ports in Umasa, Jobs in SOS , tasks in

the Representative Design, jobs in KRONO3). We choose the later.

Since we decide on managing a certain num ber of processes, a few

44

SHOPPING lists

This operating system is for the following sort of applications:

—
Time-sharing,

—
Batch Processing,

~~-
‘ Real Time Applications,

— General Purpose .

Main objective (parameter that can be measured) is:

—
Minimize response time to TB users.

J~
Minimize response time of active processes to external events.

—
Maximize processor utilization.

—
Maximize memory utilization.

—
Maximize peripheral equipment utilization.

Secondary Objective:

—
Minimize response time to TS users.

— Minimize response time of active processes to external events.
1~’Maxiaize processor utilization.

—
Maximize memory utilization.

—
Maximize peripheral equipment utilization.

Operating requirements (qualitative parameters) ares

—
Reliability. If so,indicate potentially adverse agents,e.g.

user programs or external events:

—
Protection. If so, indicate what should be protected and against

what:
/Cost efficiency.

— Ease of modification of system and applications.

- - - S ~~~~ -~~~~--~~~- --- -~~~~~~~~- -5 --

45

questions arises

a. What is a process ?

b. How is it recognized by the system 7

c. How many processes are managed?

Answering these questions already has a serious effect on Processor and

Memory management techniques.

For simplicity, we describe a process as a collection of a main

program along with some subroutines and some blocks of data. This corre-

spond to the notion of a task in OS 360, program in Kronos, job in aT-il,

~nd in SOS and the task representative Design.

The information the system maintains about a process contains at

least:

- where It is located in primary or secondary storage.

- its current state (ready , act ive, blocked , etc)

- a “save area” holding the current values of registers when the

process is interrupted.

- a list of the ressourcea the process owns or is entitled to use.

- a list of exception handling actions.

- additional information related to interprocess communications

and synchronization .

The question of the number of processes is fairly complex in its

implications. On one hand we could have a fixed number of processes which

exists all the time (sos, aT-Il). On the other hand, we could have a va-

riable number of processes (with may be a maximum number fixed by the

system). This Is the case of KEONOS and Umass (if one consider active ports

- - S
-

~~~~ _



46

only). In the later case, we would have tc decide how processes are cre-

ated and destroyed, who may create and destroy processes, and what is

the relationship between a craeted process and its creator.

The choice between fixed and variable number of processes depends

also on whether a process must be a primary memory or can be swapped to

secondary and remain *active~ This in turn depends on whether processor

management deals short term scheduling only (e.g. sos) or with short and

medium term scheduling (e.g. KRONOS).

For simplicity , let us decide that processes -must be in primary

memory . Two alternate solutions are:

a) Fixed number of processes: All processes axe defined at system

initialization . No creation or deletion of processes may occur

during operation.

- b) Variable num ber of processes: A certain number of processes are

initialized when the system is bootstrapped (e.g. process

accepting commands t ram the operator console). These processes

can in turn create some processes and start them , No hierarchi-

cal ordering is imposed between a creating process and a created

process. A process can terminate or be destroyed by another

process. The primitives needed in this case are s

- create a process

- terminate a process

S S



47

Because our basic operating system is aimed to manage a fairly static set

of real time applications like aT—li or SOS, the first solution is pre-

ferred. A fixed number of tasks is managed. All tasks are known at system

generation and must be resident in primary memory .

.1 •~~~ ~r~~~se ~ynchron.tsation:

Process synchronisation denotes the set of primitives by which a

process can check the current status of other processes or can delay its

execution until other processes have reached a certain state .

In aT-li and Kronos (auto-recall feature), a process can synchror

raze itself only with a single process . The kind of event on which a ~~~

process can synchronize itself can be a date (check whether the clock 2I~

process has reached a certain date , or wait until a certain date occurs

or until a certain amount of time has elapsed) , or the completion of a

given I/O operation. The corresponding primitives are :

- check the status of an event.

- wait for an event to occur.

In addition, RT-ll and SOS supply SUSPEND and RESUME requesto by

which a process can go to sleep and be later reactivated by another pro.

cesa. This equivalent to a binary semaphore on which signal and wait ‘ -
~
.

operattons can be issued . Whereas the previous primitives “check”

and “wait ” allowed a regular process to synchr*nise itself with a pseudo

process running under interrupt level, semaphores facilitate the synchro-

nisation of regular processes according t~ pxeestablished strategies.

To facilitate the synchronisation of more than two processes , general



4 7. 1

semaphores are preferable to bina ry semaphores. In our operating system ,

semaphores are defined statically , at system generation time . The primitIve

operations on semaphores are the classics

- signal ( semaphore )

- wait ( semaphore )

i .~ Inter-Process Communications.

Inter-Process Communication (IPC) demotes the prtaitives by which

two processes cai~ exchange short messages (e.g. application process and.

operator console process). aT-il and KRONOS provide such facilities.

There are two ways to consider IFC primitives: -

1) IFC primitives are considered independently of other synchro-

nization primitives as in aT-li or KRONOS. IPC primitives include a

connection primitive to establish a unidirectional communication link ,

send and receive operations similar to I/o rea4 and write , and an

acknowledgment protocol.

2) 11C operations are considered as an outgrowth of synchronization

primitives. When two processes want to communicate, a mailbox is provided

by the system. The two processes manage this mailbox according to a

given strategy and coordinate their operations with semaphores (see

Brinch Hansen p io’i’)

The first approach Is needed in systems like JCRONOS where processes

cannot share a portion of the memory • The overhead of this method is rather

high because messages and acknowledgments must be copied back and forth .



48

To keep a low overhead , and allow more flexibility at the process level ,

we choose the second solution , although it does not appear in any of the

systems reviewed . It simplifies the internal structure of our system , but

it also implies that processes should be allowed to share a message buffer.

Because of the applications projected for this system , message

buffers are defined statically a~ sytem generation time and. are resident

in memory during system operations.

1.’+ Process ~~~~~~~~~~~~~~~~~~~~~~~~~~
A process as defined in the previous sections can be in one of 3

states: blocked, ready , and running.

Bloekad processes can either be waiting for an event or stopped at

a semaphore. With each event is associated a queue. The basic operations

needed to manage an event queue ares

- Enter a process into an event queue.

- Transfer all process from an event queue to the ready list .

W ith each semaphore is associated a counter and a queue. The basic

operations needed to manage a semaphore ares

- Test semaphore counter.

- Increment , decrement semaphore couneer.

- Insert a process at the end of the queue.
FIFO

- Remove a process from the beginning of the queue.)

S -~~ S~~~~~ S -~~~



49

2. Processor Management.

Processor Management denotes the set of operations and policies

used to share the physical processor(s) between the pseude processes

and the regular processes.

Pseudo processes are interrupt servicing routines and run under

hardware interrupt level. The system may manage information about these

processes but their scheduling is usually imbedded in the base hardware

(cf. PDP—ii).

The regular processes are not directly activated by external events.

Processes that are not blocked are either running or ready to run. The

ready list contains the names of those processes that are eliGIble to run.

The scheduling algorithm used in Umass can be likened to a Round

Robin algorithm. A sigle list of ready processes (compilations and exec-

utions of user programs) is managed in PIFO order. The processor is allo-

cated for a time slice to the process on top of the list. If th. process

completes its time slice without blocking itself, it is returned to the

end of the ready list.

In SOS, the list of ready processes is ordered by priority, The

highest priority job is given the control of the CE~J until it blocks

itself or terminates executing the current task. If the process does not

block itself , it is reinserted into the ready list according to its

priority. An executing process may change its priority.

A process is allocated the processor for the duration of a

whole taski there is no fixed time slice.

- _ _ _  - - - - S - - S



50

KRONOS uses a priority queue to allocate th~ processor between

the processes resident in primary memory . The priority of a process can

be fixed (high priority processes like ThLEX) , or variable. In the later

case , the priority of a process depends on the base priority ‘~f the user

and the anticipated use of ressources. The highest priority job on the

ready list is given control of the CF for a fixed time slice. It is then

reinserted into the ready list just before processes of lower priority.

For a real time operating system , the primary goal of the sched-

uler is te insure a minimum response time to external and internal events.

There are two ways to look at this goal. This , in turn ,suggests two

different scheduling techniques.

1) To insure a minimum response time to a single event , the proc-

essor should be allocated to the process that deals with the event until

this process terminates. Since many events may occur quasi—simultaneously ,

the var~ous processes are assigned a priority. The scheduling algorithm

uses a simple preemption scheme . When a process is dispatched to the

ready queue , its priority is compared to the priority of the running proc-

ess. If the running process has lower priority , it is preempted and

returned to the ready list 1 the incoming process is allocated t~s proc-

essor. If the running process has a higher priority, the incoming process

is inserted into the ready list. When a running process blocks itself

or terminates, the highest priority process in the ready list is sched-

uled. To provide some flexibility, e running process may modify its



51

priority. If a running process lowers its ~riority, the ready list is
inspected and the running process may be preempted to be replaced by the

currently highest priority process. With this algorithm , there~ia no
need to distinguish between hardware interrupt routines and other proc-
esses.

2) To insure a minimum response time to all events, in the average,
all processes in the ready list should be allowed to advance smoothly .
This implies a Round Robin scheme , where all processes have simi lar prio-
rity. i~ach ready process receive a fixed time slice on the processor
before beim~, returned to the end of the FIFO queue. Preemption is avoided .

This scheme minimizes the system overhead.

There is no reas~a to prefer one scheme to the other. Queuing models

do show that either one can be better than the other depending on the job mix.

But these models rarely account for the CF t&me taken by the scheduler

itself or by the preemtion mechanism. No choice will be made at this point
and. both techniques will be investigated further.

The various aspects of processor scheduling that are serious can-
didates for hardware enhancement are context swapping and preemption

mechanisms, the ready queue and. its manipulation primitives.

3. Memory Management.

Memory management denotes the set of techniques by which the
physical memory is shared between the various processes.

For a real time system whose load is known at. system generation
time , little more is needed than what is provided. by aT-li or SOS. The
memory space is allocated statically between the various processes when

the system is generated. No protection between the various processes is

supplied (the programmer is implicitely trusted., or the software devel-

opment tools prevent undesirable interaction between processes) .

The main reason for this approach is that real time processes must

S ~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~


2

be memory resident to provid e acceptable recponse time . For those processes

that are not so critical ,e.g periodic checkpoints or processea that need

to be scheduled every few minutes or so , it may be too expensive to pro-

vide enough memory . These processes can be decomposed into a resident

root and one or many overlays. These processes may share (through sema-

phores) ~.ihatever upace remains available (this space is known at system

generation time) to load their overlays. The load point of these overlays

is known at system genration time , so that no relation need be performed

at load time. Semaphores and basic I/O operations are thus the only serv-

ices required to manage overlays.

4. 1/0 Managements

By I/O management, we mean the techniques used to manage i/o devices,

and the services provided to the user processes using these devices.

The first step is to specify what I/O devices are managed by the

system.
-

aT-li. manages common peripherals only . Application programs may

supply their handlers for private devices , but these handlers do not

interface with the system (it is not possible to issue a W RITh request

to a private device). In short aT-il does not know about private devices.

This is made possible by the vectored interrupt system of the PDP-ll.

In all other systems we have reviewed, all devices (private and

common devices) are known by the system . 1~ach device has a handler (corn —

53

posed of an initialization routine and an interrupt service routl.ne) which

is incorporated. in the system at system generation time. In KRONOS, RT-l1,

and the representative Design, device handlers are not permanently

resident. The only reason for doing so is to save memory for other use

when some devices are not in use. For our design, we will assume that all

device handlers are memory resident (first, memory is cheap~ second, it

might be impossible to predict that a deviee is not going to be used for

a long period of time).

There are three types of i/o devices which are managed differently

in most systema s

1. System owned! system managed. degices.

2. System owned / system allocated devices.
3. User owned. / user managed devices.

The first two categories exists in all systems. system owned and

managed devices are shared by the system and other processes, like a disk

unit. These devices are file structured and can be used quasi simultane-

ously by many processes.

System owned and ailecated devices are allocated by the system to

a single user at a time (e.g. tape drive or plotter). A process must

request the device before using it and return it to the system afterward.

User owned and managed. devices are private devices that are dedi..

cated. to an application (e.g. radar, or dedicated terminal).

The various type. of services provided by the system for each

--~~ -—~~-

54

type of device and the prospects for enhance:~’ent are discussed below.

4.1 ~~~~~~~~~~~~~~~~~~~~~~~ owned devices,

Most system owned and managed devices are mass storage devices,

where the system maintains a file structure for itself and for user proc-

esses. The kind of services provided to the user includeas

- file management servicesi open file , close file , rename, change,

purge , copy , etc .

- data transfer servicess read a record from a file,

write a record to a file .

These requests are processed by the file manager which , in turn, calls

the device handler.

There is little prospect for the enhancement of most of these oper-

ations, because they depend on specific file structures and specific de-

vices. There are, however two functions , that require our atte~tioni

- file space allocations Any system uses a ttack allocation algo-

rithm (c . f . MST/TRT tabLe and its manage’nent in KEONOS, and. simi-

lar functions in Umass)which can be time consuming when the

available file space is large .

- data transfer optimi zations the average access time to a spe-

cific location on a mass storage device is very long. Studies

show that when disk operations are performed in the order in

which they are requested , the use of a moving head disk is far

from optimium . Consequently , the average response time of I/O

55

bound processes i. affected . By rtordering the re~u.st.I disk

operations that are requested , the apparent access time to the

diak can be lowered and a better response time can be obtained

in the average .

1+ .2 ~~~~~~~~~~~~~~~~~~~~~ allocated devicess

This type of device correspond to tape drives , plotter , etc , which

can be accessed by one process at a time , for a long period of time (e.g.

tape drive , paper tape punch , plotter) . These devices must be explicitly

allocated and returned. The services needed for this device includei

— allocate device.

- return device.

A process requesting the allocation of a device already allocated

to another device is suspended until the device is returned to the system.

There is no preemption. Furthermore , we will assume that no deadlock can

occur in a real time system with a static set of applications programs.

The system owned and allocated devices do not usually have a file

structure and the data transfer requests are processed entirely by the

device handler. The data transfer requests area

- Write data to device .

- Read data fmom ’tutce.

Because only one process can use the device for a period of time , there

is no point optimising the data transfers on these devices (which are

most often s.qu.ntial, anyhow). Only the allocation scheme may be a cand.i-

S _~_ ~~~~~~~~~~~~~~~~
—

c

5 h

date for hardware enhancement.

4 .~ ~s~r_o~n!dJ_u!e~ managed devices,

These devices are private devices whose handler is user supplied.

These handlers follow system conventions so that user processes may re-

quest data transfer in a way similar to ~+,2. The main difference with

devices of ~i .2 is that private devices are statically owned by some

user processes.

5. ~xception Handling.

~xception handling denotes the ~et of techniques by which excep-

tional events are detected and processed.

The first step is to define what an exception is. The initial

concept can be best explained by a simple example . In most computers , a

division by zero causes an internal interrupt. This interrupt is processed ,

in the usual fashion, and the interrupted program is either aborted or

continued . This feature was implemented because it is faster than to

force a program to check , before every division , that the divisor is non-

zero , when such an operation is unlikely to occur. The gain in speed is

obtained at the detection of the exceptional event , not during its proc-

essing.

In H~ -1l , the basic exceptions are illegal address (detected by

time-out on the Unibus) and illegal instruction (detected in the central

processing uni t) . In Umasa, the exception are overflow , underfiow , shift

57

fault., divide check., and bound e rrors. In KEONOS, illegal instruction ,

address out of range , operand out of rangu , and. indefinite operand are

exceptions detected by the central processor.

Most operating systems define additional system dependent “excep-

tions” . In KRONOS and RT-11, these exceptions correspond to illegal

system requests, time limit, file limits, or file related operations that

cannot be serviced. These exceptions are detected by software , rather

than hardware. Their only resemblance with the previously defined excep-

tions is in the way they are processed . We choose not to ~include them in

our design for the following reasonsa

i) exceptions are considered only because of their interactions

with other part. of a system. The hardware exceptions are

sufficient from this point of view.

1~xcept for the way they are detected , system dependent exceptions

are processed in the same way as hardware exceptions System

dependent exceptions do not require additional mechanism and

would otherwise complicate our design. If it so happens that

the hardware enhancement of our design provides for hardware

detection of some system dependent exception, this exception

will become undistinguishable from the ini$lal harware excep-

tions .

2) The basic hardware exceptions may occur in a fully operating

real time system, due to invalid external data (although a

proper design would attempt to avoid them) . System dopes-

— S
-

~~~~~~ 
— - - - — - - -



r~~~

dent exceptions could. only occur due to sloppy design or imple-

mentation. System dependent exceptions may be needed to debug

application programs but they can represent an unnecessary

overhead during full scale operation.

The set of exceptions in our system contains a

- Illegal address (unexisting physical address) .

- Illegal instruction.

- Division by zero.

- Floating point exceptionsa overflow, underflow, division

by zero.

The next step is to define how exceptions are processed . In ET—il

and KRONOS, a user program can mask some of the hardware exceptions. In

KRONOS , Umass, and RT-11, a user program may includn a set of excep-

tion handling routines, These rout’nes are associated with the corres-

ponding ezeept~on by a system request issued at the beginning of the pro-

grain. In summary ,there are three ways an exception can be handledi

1. Faulty process is aborted (unmasked exception).

2. ~i.xception is ignored and faulty process i. allowed

to proceed (masked exception) .

3. Control is given to an error handling routine

supplied by the process (the content of the central

registers at the time of the exception are passed to the

exception handling routine).

The8e three possibilities are retained for our operating system. Because

S - -~~~



59

of the static set of processes in operation , the type of action to be

taken for each exception and for each process is defined statically at

system generation time . 1~ach process may have a different set of responses

to the various exceptions. Each process has an exception table with a

distinct entry for each exception. Each entry in that table contain either

abort or mask (1 and 2 above ) or the entry point of an exception routine

(case 3 above).

.— ——.—-- S—-—.--—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~_~~~ _j ~~~~~~~ - — - ____ __-

- 
-. ~_._ ; - - S - -~---- - S -



- 60 
-

)ui ~~si  Ij).-r~~ tL!1~~ S~yst.~_ ni

This doc ument sunamari~ e a the be sic operating syste~ abstracted from KRONOS ,

fiT-il, SOS, TACTIRE , and the Representative design . A tentative set of

system requests is included in the text.

:~~~~~~eral Overview.

Our basic operating system is intended. for the run-time support of

a fixed number of real time tasks. Its primary goal is to minimize the

response time to external events.

A task or a process is composed of a main program and various sub-

routines. A process must be resident in primary memory. If a process has

an overlay stucture , the main program or root of the process must be

resident in primary memory . It is up to the root of a process to insure

that the proper overlay is loaded before passing control to it.

The number of processes managed by the system is fixed at system

generation time .

2. System request mechanism.

To request a service from the system , a process must first load

one or two aentral registers with the appropriate parameters . In the came

of data transfer related operations only , one of the pare.meters is a poin-

ter to an area of memory called. I/O descriptor.

-.---—- -C - - - --- -  - 5-- - - - _~~~ 5_~~~ 
S~~~~~5~~~~~ 5~~~~~~~~~

S . :- . --
~~~~~~ - ~~-


61

The process then iseues the appropriate service call instruction.

Upon return from the system , the contents of the registers are generally

undefined. In some cases , the systems returns one or more result values

in the central registers.

3. Process ManaKement.

~~ . 1. Scheduling

Each process has a priority used for scheduling purposes. The high-

est priority ready process has control of the CPU. A running process may

modify its current priority using the following request s

PRIORITY n , where n is between 0 and 128.

A running process that lowers its priority may be preemted.

2 .2 ~ynchrentzation

.CHEC K DATE

A process may check that the centra l clock has reached a certain

date by issuingaCHEC K_DATE dat~

Upon return, the central regi ster ~O contains a value indicating whether

the clock hem a current value lower 1 equa l or greater than the input

parameter.

.Check I/O COMPLETION

A process may check whether an I/O operation formerly requested is

still pending , has been initiated., or has completed by issuing a

CHEC K_I/O I/O descriptor address

Upon return, teh central register RO contains a value indicating the

~

- - —----- ---—-S-.- ~~~~~~~~~~~~~~~~~~~

- - - ~~~~~- - -~~~~_-~~~~~~~~~-~~~~ - -_- -S -~~~~~~~~~~~~

62

current status of the designated I/O operation.

Note s If the system keeps the current status of the oentral clock in a

fixed location , and records th~ status of an I/O operation in its

descriptor, these requests can be eliminated (i.e. no service call needed.;

the program can check by itself , using a standard macro) .

.WAIT DATE

A process can suspend itself until a certain date occurs by issuing

WAIT_DATE date , or

WAIT_PERIOD time

Wh3n the proper date occurs , or the amount of time is elapsed, the process

is returned. to the ready state . No parameter is returned by the system .
rocess is resumed at next instruct ion following WAIT .

.WA1T_I/O_CCIIIPLETION *

A process can suspend itself until a formerly issued I/O operation

has been completed., by issuing s

WAIT_I/O I/o descriptor address

No parameter is returned, by the system.

.S1~4APHORES

General semaphores are available in our system. There are defined.

statically at system generation time. The available requests are s

SIGNAL_SW semaphore #

WAIT_S~~ semaphore #

When a S IGNAL_S~~ request is issued, the first process of the semaphore

queue is unblocked, or the semaphore counter is Incremented if the queue

Is empty . A process issuing a SIGNAL_S~21 request is preempted when it

63

unbiocka a process of higher priority.

When a process issues a WAIT_5E11 request , it is blocked and ap-

pended to the semaphore queue if the semaphore counter is zero. If the

semaphore counter is positive, the process is allowed to proceed aft~~

dec resenting the semaphore counter.

INTERPROCESS COMMUNICATION .

Mailboxes are used for interp rocess communications. MAilboxes are

allocated statically at system generation time . Sending and receiving

processes coordinate their use ~f a mailbox through semaphores.

14, Memory Management.

Most of the memory is allocated statically at system generation

time . The remaining space is allocated dyna.mically to requesting processes

for overlays and buffer apace. The allocation is handled by the various

processes using semaphores.

There is no hardware prc t~ cL ion rnec h ’-m1’~n n protect one process from

another at run time.

5.1/0 Manage..snt.

~.i ~~~~~~~~~~~~~

Processes can manipulate files located on system owned / system

managed devices. Pile management requests are directed to the file manager.

The requests includes

OPEN filename

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r, ~-•t -

5 - - -



64

CLOSE filename

IURGE filename

COF’I filename -

The requesting process is suspended until its request baa been satisfied.

5.2. Device Management.

System owned / system allocated devices are allocated dynamically

to requesting processes. Only one process at a time can own such a device.

Requests are s

ALLOCATE_DEVICE device #

RETURN DEVICE device #

A process requesting allocation of a device already allocated is suspended.

until the device becomes available . Requests are served in PIFO order.

A p~cess returning a device is preempted if the device is immediately

allocated to a higher priority process.

~ ~~~~~~~~~~~~~~~

To issue a data transfer request , a process must first estabUsh

in memory an i/o transfer descriptor in a. set of consecutive locations.

An I/o transfer descriptor must contains

- file operation or device operation indicator

- file name or device name

- record index or device address

- read / write

- location of buffer in memory

- length of buffer



65

- length of exchange (#o f physical or logical records)

- a few words reserved for  sy stem control information and

transfer s~..atus.

After loading RO with the address of the I/O descriptor , the process issues

one of the transfer requests below. The requests for file oriented transfers

( system owned and managed. devices) are directed. to the file manager.

The requests for device oriented transfers are directed to the device

handler. Furthermore , a process may issue a transfer request and continue

processing or issue a transfer request and suspend itself until completion

of the transfer.

In the former case , the requests are s

BEAD_FILE I/o descriptor address

WRITE_FILE I/O descriptor address

READ_DEVICE i/o descriptor address

WRITE_DEVICE I/O descriptor address

It is possible for a process +- o check the status of a data transfer (CHEC K_

I/o) or to synchronize itself on the completion of that request (WAI T_I/O)

after further processing.

In the later case, the requests ares

READ_FILE_WAIT i/O descriptor~ address

WRITE_FILE_WAIT “ ‘. - 
-

READ_DEVICE_WAI T “ “ - -- -

WRITE_DEVICE_WAI T “ “

_._- .. _ _-_ ___-._____-._____.___•_._ _ --—_ _ - - 5———



66 -

6.Excepttom Mandling

The handling of each exception for each process is determined at

system generation tine. When an exception occurs, the system first deals

with pending I/O. Depending on the exception table , the system will eithers

a) Do nothing about I/O , or

b) Complete all pending I/O, or

c) Abort all pending I/O .

Then , the system will ether continue the process, abort the process , or

return control to an exception handling routine, as indicated in the

exception table for this process, In the later case, the exception handling

routine is passed the value of all registers at the time the exception

occured, in a set of locations whose starting address is given in RO.

The set of possible exception iss

—Illegal address,

- Illegal instruction ,

- Division by ‘~ezo,

- Floating point exoeptionsi overflow, underfiow, and

divison by zero.

0

7. Other facilities.

All the run time facilities supported. by our system have been

described above . Additional compile time facilities may be available , but

are not considered in this a~j etom.



67 H
Pa r t  I: Sy stem I r im i tives

1. Processes

The states t rans i t ion  diagram of process~-s is given on page 2. Each

process is iden t i f i ed  by its descrip u r .  A process descri p tor  contains :

— PRIORITY : The current  pr ior i ty  of the process.

— CONTEXT: a save area for the r eg i s t e r  contents  of the process when

it is p reempted .

— RETURN POINT: return address of the process when preempted or

blocked .

— EXCEPTION STATUS : normal or recovering.

— RECOVERY I/ O OPTION : abort  pending I/ O , complete pending I/O , or

do r~o thing . 
-

— PENDING I/O COUNTER : number of I/O operations issued and not comp leted ,

used fo r  recovery . -

— RECOVERY ACTION : pointer to recovery table (the recovery table is

indexed by exceptions and contains entry point fo r

recovery .

—DEADLINE: current clock deadline (valid only when process is waiting

for date).

—NEXT : forward list pointer.

Except when running , a process belongs to one specific list (active list ,
semaphore queue , etc..). NEXT contains the name of the next process on the
list or nil. When a process is running, the value of NEXT is irrelevant. The
running process name is contained in the location CURRENT .

2. Active list.

This list is organized as a link List ordered by decreasing priority .
All operations on this list are prote ted . The basic operations are insert ,

- ‘~~~~~~r~~~~~ ~aW~~~ -,- —-.-- - - -  - -

5 - 5



LU

~~~~~~~

~~~~~~~~~~~~~~~~~~~ 

//



69

remove , and compare priority of current running process w’..th priority of

the first active process. ACTIVE_F’IR~?1’ and ACTIVE_LAST contain the name

of the first and last processes on the active list , or ~~~ if no process
is active .

3. I/O Requests.

When issuing a d~ J W or ~EITE request, aprocess must specify the
address of the descriptor of the operation. The descrintor cOntainsi

— OWNER. the name of the ~roceas issuing the operation.
- DEVICE. the name of the device used for the operation.

- EXCHANGE. all data pertinent to the exchange (fixed size)

- I/O_STATUS, request pending, being performed , or completed.
- Next_DESCRIPTOR . The descriptor c~. a -~equest which pending or

being performed , always belongs to a list of

requests associated. with the device , NEXT_
DESC[IXPTOR contains the address of the next

descriptor in this list , or
- FIRST_WAITING _PROCESS. explained in 4.
- LAST_WAITING_PROCESS. explained in 11..
- T}~ 1Ps locations reserved for the file manager and the device handler.

The descriptors of the requeats for an operation on device 1) are queued

on a list associated with I). D_FIRST contains the address of the
descriptor for the transfer being processed, or ~~j, if the list is empty

(device inactive). D_LAST contains the addzes~ of the last descriptor on

the list or nil. The list is usually managed in FIFO order , although some

devices (e.g. disks) may have different strategies. Since descriptors are
added to the list under program level and removed under interrupt level ,

all opeartions on the list must be protected.

4. h o  Synchronisation.

Any process can suspend itself until completion of a transfer

Initiated by itself or any other process. When a process suspend itself ,

it is placed in a FIF’O list associated with the transfer. Physically, the

process descriptor is placed on a list associated with the descriptor

____________________________ ________________________ - - --—-5 — - — - - — - -  —



of the transfer. bach I/O descriptor contains two pointers FIR~T_WAI TING _
PROCne~ and LAST_wAITING _PROCESS used to manage the FIFO list of proces~ en

waiti r~.; for completion of the transfer. rocessea are added to the lint

under program level. They are returned to the active list unde r interrupt
leve l when the tranfer completes. A process attempting to block itself

on a transfer already completed is returned to tne active list immediately .
rr lmative operations on the synchronization list are enqueue and return
quc.ue to ACTIVE list..

~~~ Semaphores.

Each semz~pbore consist s of a counter COU NT to recoril the number of
SIGNAL s that have been received, and a (possibly empty) list

of w~tting processes managed with two pointers SEM FI RST and S~)~_LAST.
The list of waiting processes is managed in FI FO order. Since Adding or

removing processes to this list is caused by the running process ,

protected. mode is required, to prevent 1 reemption of the running

process before completion of a SIGNAL or WAIT request.
The mechanism far device allocation is equivalent to a binary

semaphore and is implemented similarly.

6. Clock Synchronization.

Processes that suspend themselves until a certain date occurs are

inserted into the Clock list. The real time clock process checks this list

at every clock interrupt and returns to the active list processes whose

deadline has expired. The list is managed by increasing deadline and uses
0 two pointers CLOCK_FIRST and CLOCK_LAST. Since operations on the clock

list are performed under interrupt level and program level , and may affect the

running process, they m~.rnt be performed in protected mode.

?. Examplei

The illustration of page 5 shows a snapshot of a system with 6
processes. The running process P0 has been omitted from the illustration.

Processes P1 and P2 are active. Processes P3 and P4 are waiting for the

completioi~ of a transfer requested by P3. Another transfer has previously

71

r~~~~~~~~~~
_ _1r~~ ~: T~~~~~~~~~~~~~

/ i i ~~~
-

~~~~ 

L__~
_ 
~!J 

/ 

~/ 171—

I



F I

been requested on the same device by P and is being processed. No process

is waiting for completion of this transfer. Process P5 Is waiting for a

signal on semaphore #1.

PARI’ II. System Routines.

This section presents flowcharts for a number of system primitives and

system requests.

1. The preemption problem. Conventions.

The implementation of the preemption strategy on a simple PDP-l1

causes serious problems. The reason is that a running process may be preempted

both under program level ( PRIORITY RE~UEST ) and interrupt level (completion

of exchange, clock deadline ,etc). To make bookeeping simple , the following

conventions are used s
a) Register R6 i~ “reserved” for the common system stack. Every

interrupt routine saves allregisters.to the stack upon entry. No other

use of R6 is allowed. Thus, when the running process must be preented

from under interrupt level, its context is entirely contained at the

base of the common stack.

When a process is preemted. from under interrupt level , the base of

the common stack is copied to the CONTEXT field of the Current. process

descriptor. The context field of the new running process is copied to the

base of the common stack (in fact copying PC, PS and R5 is sufficient).

This swapping operation and the pointer modifications in the active

list are performed in protected mode.
b) Each process and interrupt routine owns a private stack for

paraneter passing and. other uses, This stack is referred trough R5 in each

process.

-s



.

~~~ Active list Routines~

x~’~N i ~al1ed under program level to select the highest priority process

on the active list and make it CURRENT process.

C
T
D

CURRENT = ACTIVE_FIRST

ACTIVE_FIRST = NEXT(ACTIVE_FIRST)

REGS 0-5 = CONTEXT(CURRENT)

to RSTURN_POINT(CURRENT

SWAP, called under interrupt level to preempt the current process and elect

the highest priority process on the ACTIVL~ list.

(~~~~WA P 9
_ _ _) * Stack base

R?I~’U~N_POINT(CURRENT) STACK base (1))

1±NSERT CREENT into ACTIVE list
-

j

UURRENT~~ ACTIVE_FIRST
ACTIVE FIRST = NEXT(ACTIVE_FIRST)

Stack Base = CONTEXT(CURRENT)__ ______-

— — — —-- ,——.-. - — ‘ ~— . - — - - - —- - - — - - -———-- --——.——~~~.~~~—~~~~~ —-- — - --- - —— - —-———-- - —.———-— -.-—--- - - ---—- -— —— -~~~~
-- —~~— -—— ———-- —— —-

74

INSERT. Called under any leve l to insert process P into the ACTIVE list.

~~~Ek~r P into ACTIVE 
-

,.( ~~~AUTIVE _1 IRST~~~~~.i

PRIOHrn( ACTI~~_FIR~~ ) � PRIORITI( 

YeA

[NEAT~. P ) = ACTIVE FIRST [~~EVIOU S ACTIVE

I j~~
CTI~1E FIRST P — -

—-----
~~~~~~~~~~~~~~~~~~~ —- _ _ _

= NEXT(PREVIOUS

~I]

~~~~ PRIORI~~(LOOK u~)~~ 
P~IQRrn(P)~~~

___-___

_

~~~X T (P )  = WOK UP~~ [~~~ VIOUS = LOOK_~J

~NEXT(PREYIouS) =

75
-

PRIORITY Requests - made by CURRENT process.
- say cause preemption of CURRENT process.

- runs under protected mode.

(~~~oRITY Requ~~~)

-

1~~
bO
~~
TY(CURRENT) = new priority~

- ACTIVE_Fl RET = ~~~~

>‘e~3 -

----——
~~~~~

...~~PRIORITY (ACTIVE_FIEST)< P~aoktEn(uuERENT),,>

__f uo

INSE~~ CuRRENT in ACTIVE list

RSTURN_POINT (CURRENT) Return Addre s

CONTEXT(CURRENT) = Regs 0-5

Return RUN

I— ~~~~~~~~~~~ - - _ _ _  

- —-----—-~~~~ ----~ - — - _______ -



76

3. semaph ores.

~AIT SEMi - called by CURR~NT under program level.
- may cause CURttENT to bi~ suspended .
- runs in protected mode.

~~~UNT( SEM) = 
_ _

“Jo
- --

COUNT(s~ i) .< 0

I RETURN_POINT(CURFtENT) = Return AddressI
C0NTi~XT(CU ERENT) = Regs 0—5

RE h _FIkt$T = CURRENT NEXT(SI~Ii_LJ~.)f) CURRENT

.E}~_LAST = CURRENT SEN_LAST = CURRENT

NEXT(CURRENT) =

I

-

_LRetu~ D L ~~N 9

-s

77

SIGNAL SL~1. -called by CURRENT under program level.
- may cause CURRENT to be pree~ipted . - -

- runs in protected mode .

SIGNAL SEN

RSTIJRN POINT(CURRENT) Return Address

• P = SEN_FIRST

SEN_FIRST = NEXT(P)

if SCM_FIRST = ~~~ then SEN_LAST nil

• _ “S

__-c(
~PRIoRITy(p)_,PRI0RITY(cuRRswr)

-

INSE NT P in CONTEXT(CURRENT) = REgs 0-5

ACTIVE list INSERT CURRENT in ACTIVE list

Regs 0-5 = CONTEXT(CurrenT)

C~~
et

~~~D EBranch To REr ~~~~~~~~~~~ UR~~~T) 

—
-,-—,-- ~~~~~~~ - -_-- - - - 

-



7~

Lj  C l o c k  ~vnchron~zat on.

~ \Ir - calt~d by CUi~~NT it .  user tevil . DATE is input parameter.

— ~~~ ~~-
-
~~~ F ts ~.nserted in Clock queue

- Protection required to prevent messing clock queue or

preempting I,~I~~~J~:NT before completion of the request .

WAI T DATE

- -

DATh CLOCK VA~~~~~~

(Return~~~~ [~~ EADLIN E(CURREN T) DATE ~1
— I CONTEXT(CURRENT) Regs 0-5

L RETU RN_POINT (çu itRENT) = Return Address

_ _ _—

~~~~~~ 

~~~~~~ CK_LAST
__

nil~~~~~

DEADL IN E (CLOC K_FIRST) ~ DATE~>
—

_ _ _ _ _ _ _ _ _ _ _ _ _

CLOCK_Fl d.iT=C’J aE~ fl NCXT (CU 4T)=CLOCK_FIRS~ PREVIOUS C LOCK_FL RST

~~~~cK_LAs’r_=CURRRNT [BLOCK_FI RST = CU RRENT
- -

~~~~

-

~ I LOOK_UP = NEAT (FREVI0US

-
Yea

- ‘-~~~~ LOOK_UP = nil ?

DEADLINE(LO OK _UP) �DA Ti-~

_________ ——
NEXT(CURRENT) LOOK up i

- I PREVIOU S = LOOK UP
NEXT PREVIOUS CURRENTJ

Jf —3..

L~ 9
r .

~

— - . - .— - - _ — - - - —

79

CLOCK Interrupt Routinej -Unprotected , runs under interrupt level.

tDATE = new clock ~~luej

p

--

~~~~~~~~~~~~~CK FIR~~~~~~~i ?  
_ _-

\

CLOCK_FIRST )> DAT>~~~~~

P = CLOCK_FIRST
CLOCK_FIRST = NEXT( ~ )
INSERT P into ACTIVE list

tsJo

~~~~LOCK_FIRST = nil

[CLOCK_LAST =

p40 .
~~~~RIOaITy( ACTIVE_FIRST )> PRIORI TY( CURRENT 5>

L~~ 1 
--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



80

Thpu t ~2i:1i~ut Transfers.

i~~~ iU (I/o Jescr11t~
r) s  —Issued by CURRE NT unde r prograflY level.

-Protection required to avoid messing queue of requests

for device.

~~~~ AD ~~~C)

r S ~r(DEVICE(DCSC)) =

I -

~~~~~~~~~~~~~~

FI RST ( t~:~vic~( Dr,SC ) ) = ~Di~SC j NEX T( LAST ( uEvIcE ( m~sc ) ) )

LAST( LTh~VICE( L J;)) = ~

~E~C ) ___j 
——- —

T ~7~iih~-ii -~~~c~) inttiaiizationl
~~~~~~~~ 

--

[INc~~
.
~ NT PENDING ~~,io_couNTER (OWNER (DEC))J

C~~ID

81

!~.L! I/o Descriptors - Issued by CURRENT under program level.
- CURRENT process suspended and appended to list

of waiting processes on I/o descriptor queue .
- operates under protected mode until new process

elected from ACTIVE list (RUN) .

WAIT DESC

r~~~~~~~~

- STATUS(DESC~~~~~~~ mplete~~~~~>

-—

RETUIIN POINT(CURRENT) = Return Add ress
Return) ~oN TExT (CURRENT) = Regs 0-5

NEXT (CURRENT) = nil

[_ T(DEEC) =
N0

r FIRET(~~~~~~~) = CURRENT 1 [~~~~I.(LAST(DESC)) = CURRENT

[~~~~ T(_D E J C) CUEtREN T
J J~~~~T (D~~C) = CURRENT __

_ _ _ -- ----- ~~~~~~~~~~ --- I

L~~~J

— - r - - -. - --

82

I/O handier~ a - activated by interrupt on completion of transfer
- protected mode to prevend messing Device queues and ACTJV ~

queue.

l n t ~ rrupts Find D , interrupting Device.

L Perf orm bookkeeping._________

LiE~C = FIRST (t~)
STATUS(DCSC) = Completed

j
FIRST (D) NEXT(DESC)

- -

REI4ENT PEND ING _I/O.POUNT ER(OWNER (DESC)j

r ~ 1
[LAST (C) nil [INITIATh TRANSF ER OP FI~ 3T~D~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

P = FIRST UES~1 ~~1
FIRST( DEEC ) NEXT ( i )
INSERT P into ACTIVE list

~~~~~R1oR1(~~~ CURRENT 
)
< PRIORI(

~~~ 
ACTIVE_FIRST

1\io I  
_ _ _ _

r s wAP J
---i-i-



83

6. Exception Handlin.~~

- 
Only the case of exceptions that create - internal interrupts

is presented. The I/o option requires modifications in the handlers presented
in the previous section. These modifications are only discussed below.

internal interrupts CONTEXT( CURRENT ) = REGS 0-5

CONTEXT ( CURRENT , 7) Exception
Address.

___I______
Determine Exception Origin .
Select Entry Point from Exception table

denoted by RECOVERY_ACTION( CURRENT )
Store Entry Point in H~FU EN_ADDRESS(CURRENT)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~ 0

SCAN device queues and remove r Return
I/O descriptors whose owner is I/o CURRENT to

CURRENT . Return suspended I ACTIVE list
Processes to ACTIVE list .

[ExcEFrION_sTA’ru s(CURRENT) = Recovering

I)
I/O device Handlers must be modified so that, when the PENDING_I/O_COUNTER

- - - - - --~~-~~~~~~~ —-.- -.--.—.—- - -—-- - - -——- - —-- -—--‘ - — - — - - —- - - --- -- _____

84

of a Ho covering process becotnes zero, the px cmess ?ts returned to the ACTIV :~
ii. st,.

---- - - -~~~~~- - - ~~~~-- ---- - — - b

85

~yncIironizat ion

in any complex system with more tha n one processor , it is neceesary to

8ynchronize the various processes so that they do not interfere with each

other. The classic examples of SUCh synchronizat ion are a producer—conswner

relation and a race for a resource. There are several well—known ~olutiona

to the synchronization problem . Perhaps the best known are the P’s and V ’s

of Dijkstra. Other solutions include “message classes” and Petri nets. One

of the simplest and most elegant is the “monitor ” approach of b are. This

method points out , quite reasonably , that if only one processor is “permitted ”

to do a thing , then there can ’t be any races involved. Let us look at these

two classic examples and Investigate how they are handled by both PV and by a

monitor .

Consider a pr oducer a . messages and a consumer of those messages. Let

there be a set of buffers between them to store messages ti i~tt have been produced but

not yet consumed . Now clearly the consumer can’t take a message from an

empty buffer nor should a producer try to add “just one more” if the buffer

is already full.

We define three semaphores , “AVAIL” — the number of empty buf fe rs , “FULL ” —

the number of f u l l buf fe r s , and “FLAG” — a mutual exclusion semaphore. We

assume that P(S) will decrement S by one and continue if S � O,and put the

executer to sleep on S’s queue if S < 0. V(S) will increment S by 1 and if

S � 0 will wake up the process at the head of S’s queue.

The producer executes the following operations :

producer : prepare message.
P (AVAIL)
P (F LAG)
put message in buf fe r
V (FULL)
V (FLAG)
GOTO produce

— ----—-- —-—

Hi

‘‘riudg&- ’ I t s oppos i t (~ number when it i a i i~~’
- - a I I -i ~~ . ict~ t h at we havd - not

had to appeal t any tyj e ° f ‘‘nan— i - - I i i ~~~
- ri I on ’ wii I ii eo hidden In

the heart of eac h I and V .

Let us now examine b r i e f l y ti e- crit h ,~i ~ - Ion of ~i resource riilocatIo:.

a l~’or it hm. ~e have two or more pri ntoo -o- : tha t each locve or it ica l . s e e t i o n :

(RI~~ot:~~;E 1, RESflURCE 2, e tc .) w I1H ~ would i n t e r . i c i d e t r i m e n t a l l y if t he y were

a l lowed to exeo’itc concurrent ly . lor ex ii- ~~Le , the cr i t ical sec t ions mIght

involv e obtaining a page of o or e . he bracket each critical section -.~‘Ith a F

and a V on some I l :ig , t h us a] i o u i n i - . only one p r o o c o n to execute at a Inc w ft ii t ’~

i s critical -cuoti on :

Process 1 P(FLAc.)
~~~~~~~~~~ 1
V(F MC )

Process 2 P(FLAC )
RE~flURCi- 2
V O - JA ; )

T.n this case t h e action lo n t r a i g h t f o r w a r d  and re la t ive ly l i t t l e  con fus io n

is possible , given t h a t  we as :ufl L- t h a t  a P and a V are ind ivis ib le  event o .

h’or most computers this invn 1 vo~ :in appeal to a non—Interrupt .iIle Instruction

such as “replace add one” or “test and set ’ .

To understand h !oare ’s monitor approach we need to realize tha t when ~ cru

is pr ocessing an interrup t it is behavin g :‘s an independ ent asynchronou s pro-

cessor , possibly racing wi th  th e  main program for some resource. Each po sslhlo

interrupt level constitutes atiothe t such ‘ i seu d o—proce oso r ” . hl oare shows tha t

If we assign each c r i t i cal  section of cod e to exa ct ly on, processor or

pseudo—processor , there can be no race conditions . Each process d e n i r i n t  a

resource sets a I iag r ((hI1ca(1ng ittcntinn h~- iI~ - resource manager procesoor .



87

This may be recognized via polling b y the’ manager or via an in terrupt  which

creates an Incorporat ion of the manager .

The manager , when awakened or h h incorporated , examines the requests Out-

standing for its resource and arbitrates among them . Clearly this scheme will

work If the manager is incorporated as the highest po8slble interrupt level

and runs with interrupt off or If only one of the n different CPUs in a multi-

processor system ever executes the manager code. What Hoare points out is that

it will work equally well with interrupt on (in the maim program) provided

only that none of the interrupt routines do any “mess ing about” with the resource .

One might notice that there is very little , if any , d ifferences in essence

between a manager and an expanded “Ind ivid ible opera tion ”.

In our system we have chosen to t’se Hoare ’s monitor for the operating

system itself , but we have provided P and V service calls for the benefit of

those who do not understand monitors or who are dedicated disciples of Dijkstra.

_



88

Il ~e consume r -~~~ t- ~ the following :

c o r.- - , imi ~ r : P ( FULl -)
i t  I- L/’ ’ )
get v sage from hu~ I er
V (AVA] I.)
V(FLAt~)

~- ro ( ’e ’; - ;  r an sage
((i[i ~ consume

rh,~ P’s and V ’s on F1.Ah ensure tha t €- i t her the producer or the consumer

is locked out and only one of them can be changing the buffer at a time . The

produc ers P (AVA1L) wi l l  hang up if there are no buffers available and wait

until the consumer does its V (AVAIL ), f r e e ing ei -ie up. him ilarly , the con-

sum~ rs h (F’ I I.) will cause the consumer to wait until a buffer has been filled

b€ fnre proceeding . The arrangement shown i s  taken f rom Ts ichr It z i s  and

rr..stein and is uolreot as shown hut as a measure  of  the iiitui t i  ve ly non—obvious

nr tt~re of these P’s and V ’s answer the following question : ‘ i ll the algorithm

st i l l  work properly If -ic reverse t h e order  ~~ the V (AVAIL) and V(FLAG) In the

consumer? ”

Now let us look at thie wa’ a moni to r—t y pe  approach migh t  handle the

problem of producer consumer . -rhe essence of this approach Is th a t  we avoid

races by having Ly one contestant. Let there be a circular array of buffers

and let each buk fer have a one bit flag associated with it. If the flag is

one the buffer contains a message. When the producer has a message reod .- to

send , it i uo i~s for a buffer with a zero f lag , writes the message in the buffer ,

and then sets the flag to one. Similarly the consumer looks for a full buffer ,

reads out the menorw c and then c lea r s  the I lag to  zero. Obviously this will

work and there  is no question about the order in which things shoubi happen.

The only thing this descri ption does not prov ide is for a “passive wait 5 ta t~

fo r the blocked consumer or producer .  Up can add th i s  by hav i ng each process



89

~J)J~~fldIX

1. Although two papers were prepared  fo r  pub l ica t i on , nei ther  has been
accepted at this time .

2. Scient if ic  personnel pa r t i c ipa t ing  were
Caxton C. Foster
Mau reen McCorm ack (earned MS)
Steven Levitan
Fredric Richard (earned PhD)

0

- 
-± _________________________________


